Головна » Файли » Реферати » Математика |
[ Викачати з сервера (118.0 Kb) ] | 11.09.2014, 22:14 |
Реферат
на тему:
Ймовірнісний зміст
нерівності Йєнсена.
Нові інформаційні технології в освіті неможливі без нової інформації в конкретних навчальних дисциплінах. В останні роки невпинно зростає кількість прихильників виховання ймовірнісного світогляду школярів і студентів, що вивчають математичні дисципліни. При цьому дуже важливу роль відіграють приклади проникнення ймовірнісних ідей, методів і результатів у неймовірнісні розділи математики. Про один з таких прикладів йде мова у цій роботі.
Нерівністю Йєнсена в математиці називають нерівність:
, (1)
, то нерівність Йєнсена записують так:
, (2)
. В загальному вигляді нерівність Йєнсена містить замість середніх арифметичних середні зважені. Тобто
(5)
Треба підкреслити, що нерівність Йєнсена має багато важливих застосувань [1-5]. Зауважимо, що в дискретній формі нерівність була встановлена О.Гельдером (Hoelder, 1889), а інтегральна нерівність – Й.Йєнсеном (Jensen, 1906).
Інтегральну нерівність для угнутої функції записують так:
. (7)
, якщо
(9)
- лінійна функція.
диференційована в цьому проміжку.
дискретний розподіл має вигляд:
З точки зору теорії ймовірностей в означеннях (8) і (9) порівнюються математичне сподівання (вибіркове середнє) функції і значення функції від математичного сподівання аргумента (рис.1).
Рис.1. До означення опуклої (а) та угнутої (б) функцій.
апроксимується сукупністю прямолінійних відрізків, і ми одержуємо шукане узагальнення.
має вигляд:
Математичне сподівання аргументу визначається так:
Математичне сподівання функції
.
Зрозуміло, що в цьому випадку краще скористатися процедурою групування вибірки і, спираючись на попередній результат, довести нерівність Йєнсена для опуклої (1) та угнутої (2) функцій.
- об'єм вибірки. Дискретний розподіл має вигляд:
.
Нерівність Йєнсена в цьому випадку має вигляд:
,
. (12)
стоїть математичне сподівання випадкового аргумента:
,
в правих частинах маємо математичне сподівання функції випадкового аргумента:
.
Порівнюючи математичне сподівання функції випадкового аргумента і значення функції від математичного сподівання аргумента, неважко встановити, що (11) і (12) – це узагальнені означення опуклої і угнутої функції відповідно (рис.2).
.
функції:
.
неоднакові. Така дискретизація застосовується при визначенні координат центра ваги неоднорідного стержня. Тепер, спираючись на узагальнені означення опуклої (11) і угнутої (12) функцій, неважко довести нерівність Йєнсена з математичними сподіваннями (3) і (4). При цьому дискретний розподіл має вигляд:
опукла) або вище дуги (якщо функція угнута).
:
.
:
.
, тому для опуклої функції
,
для угнутої
.
В теорії ймовірностей такий незбіг функції середнього і середнього функції називають "парадоксом оцінювання" [6]. Дослідження парадоксів – кращий спосіб досягти взаєморозуміння фахівців в різних областях науки. Спроби вивчати будь-яку область математики за допомогою парадоксів
| |
Переглядів: 353 | Завантажень: 111 | |
Всього коментарів: 0 | |
Географія [101] |
Фізика [100] |
Математика [72] |
Історія [61] |
Україннська література [100] |