Головна » Файли » Реферати » Фізика |
[ Викачати з сервера (733.5 Kb) ] | 11.09.2014, 20:07 |
1.1. Из истории спектроскопии магнитного резонанса. До недавнего времени основой наших представлений о структуре атомов и молекул служили исследования методами оптической спектроскопии. В связи с усовершенствованием спектральных методов, продвинувших область спектроскопических измерений в диапазон сверхвысоких (примерно 103 - 106 МГц; микрорадиоволны) и высоких частот (примерно 10-2 - 102 МГц; радиоволны), появились новые источники информации о структуре вещества. При поглощении и испускании излучения в этой области частот происходит тот же основной процесс, что и в других диапазонах электромагнитного спектра, а именно при переходе с одного энергетического уровня на другой система поглощает или испускает квант энергии. Сверхтонкая структура атомных спектров навела Паули в 1924 г. на мысль о том, что некоторые ядра обладают моментом количества движения (угловым моментом), а, следовательно, и магнитным моментом, взаимодействующим с атомными орбитальными электронами. Впоследствии эта гипотеза была подтверждена спектроскопическими измерениями, которые позволили определить значения угловых и магнитных моментов для многих ядер. В 1921г. Штерн и Герлах методом атомного пучка показали, что измеримые значения магнитного момента атома дискретны соответственно пространственному квантованию атома в неоднородном магнитном поле. В последующих экспериментах, пропуская через постоянное магнитное поле пучок молекул водорода, удалось измерить небольшой по величине магнитный момент ядра водорода. Дальнейшее развитие метода состояло в том, что на пучок воздействовали дополнительным магнитным полем, осциллирующим с частотой, при которой индуцируются переходы между ядерными энергетическими уровнями, соответствующими квантовым значениям ядерного магнитного момента. Если ядерное спиновое число равно I, то ядро имеет (2I+1) равноотстоящих энергетических уровней; в постоянном магнитном поле с напряженностью H расстояние между наивысшим и наинизшим из этих уровней равно 2mH, где m- максимальное измеримое значение магнитного момента ядра. Отсюда расстояние между соседними уровнями равно mH/I, а частота осциллирующего магнитного поля, которое может вызвать переходы между этими уровнями, равна mH/Ih. В эксперименте с молекулярным пучком до детектора доходят те молекулы, энергия которых не меняется. Частота, при которой происходят резонансные переходы между уровнями, определяется путем последовательного изменения (развертки) частоты в некотором диапазоне. На определенной частоте происходит внезапное уменьшение числа молекул, достигающих детектора. Первые успешные наблюдения ЯМР такого рода были выполнены с основными магнитными полями порядка нескольких кило эрстед, что соответствует частотам осциллирующего магнитного поля в диапазоне 105-108 Гц. Резонансный обмен энергией может происходить не только в молекулярных пучках; его можно наблюдать во всех агрегатных состояниях вещества. В 1936г. Горнер пытался обнаружить резонанс ядер Li7 во фтористом литии и ядер H1 в алюмокалиевых квасцах. Другая безуспешная попытка была предпринята гортнером и Бруром в 1942г. Регистрацию поглощения высокочастотной энергии при резонансе в этих экспериментах предполагалось производить соответственно калориметрическим методом и по аномальной дисперсии. Основной причиной неудач этих опытов был выбор неподходящих объектов. Лишь в конце 1945 года двумя группами американских физиков под руководством Ф. Блоха и Э.М. Пурселла впервые были получены сигналы ядерного магнитного резонанса. Блох наблюдал резонансное поглощение на протонах в воде, а Парселл добился успеха в обнаружении ядерного резонанса на протонах в парафине. За это открытие они в 1952 году были удостоены Нобелевской премии.
Метод ЯМР, хотя он и называется методом ядерного магнитного резонанса, не имеет никакого отношения к ядерной физике, которая, как известно, изучает процессы превращения ядер, т.е. радиоактивные процессы. При этом магнитная энергия (а явление ЯМР имеет место при помещении исследуемого образца в постоянное магнитное поле) не влияет на термодинамические свойства вещества, т.к. она во много раз (а точнее - на несколько порядков) меньше тепловой энергии, характерной для происходящих в обычных условиях процессов, в том числе и биологических. Основные достоинства метода ЯМР. - Высокая разрешающая способность – на десять порядков больше, чем у оптической спектроскопии. - Возможность вести количественный учет (подсчет) резонирующих ядер. Это открывает возможности для количественного анализа вещества. - Спектры ЯМР зависят от характера процессов, протекающих в исследуемом веществе. Поэтому эти процессы можно изучать указанным методом. Причем доступной оказывается временная шкала в очень широких пределах – от многих часов до малых долей секунды. - Современная радиоэлектронная аппаратура и ЭВМ позволяют получать параметры, характеризующие явление, в удобной для исследователей и потребителей метода ЯМР форме. Данное обстоятельство особенно важно, когда речь идет о практическом использовании экспериментальных данных.
Главным преимуществом ЯМР по сравнении с другими видами спектроскопии является возможность преобразования и видоизменения ядерного спинового гамильтониана по воле экспериментатора практически без каких-либо ограничений и подгонки его под специальные требования решаемой задачи. Из-за большой сложности картины не полностью разрешенных линий многие инфракрасные и ультрафиолетовые спектры невозможно расшифровать. Однако в ЯМР преобразование гамильтониана таким образом, чтобы можно было подробно проанализировать спектр, во многих случаях позволяет упростить сложные спектры. То, с какой легкостью удается преобразовать ядерный спиновый гамильтониан, обусловлено определенными причинами. Благодаря тому, что ядерные взаимодействия являются слабыми, можно ввести сильные возмущения, достаточные для того, чтобы подавить нежелательные взаимодействия. В оптической спектроскопии соответствующие взаимодействия обладают значительно большей энергией и подобные преобразования фактически невозможны
| |
Переглядів: 395 | Завантажень: 155 | |
Всього коментарів: 0 | |
Географія [101] |
Фізика [100] |
Математика [72] |
Історія [61] |
Україннська література [100] |