

Overdrive

C# Developer’s Headstart

About the Authors
Mark Michaelis lives in Glen Ellyn, Illinois. He currently holds the position of
senior software architect for Real World Technology, which specializes in software
for the manufacturing industry. He holds a BA in philosophy from the University of
Illinois and has a Masters of Computers Science from University of Illinois Institute
of Technology. Mark is also a Microsoft Certified Solutions Developer (MCSD) as
well as a Microsoft Most Valuable Professional for the Visual Studio Enterprise
product group. He is the author of COM+ Programming from the Ground Up.
Mark can be contacted at: mark_michaelis@dotnetprogramming.com.

Philip Spokas received his Bachelor of Science in Mathematics and Computer
Science from Benedictine University in Lisle, IL and is a Microsoft Certified
Professional. He has a vast range of development experience, including all versions
of Windows since 1.0, OS/2, and UNIX. He is the vice president of software
development at Real World Technology.

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

C# Developer’s Headstart

Mark Michaelis
Philip Spokas

Osborne/McGraw-Hill
New York Chicago San Francisco

Lisbon London Madrid Mexico City Milan
New Delhi San Juan Seoul Singapore Sydney Toronto

Copyright © 2001 by The McGraw-Hill Companies, Inc. All rights reserved. Manufactured in the United States of America. Except as
permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or
by any means, or stored in a database or retrieval system, without the prior written permission of the publisher.

0-07-219108-2

The material in this eBook also appears in the print version of this title: 0-07-219116-3.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trade-
marked name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringe-
ment of the trademark. Where such designations appear in this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate
training programs. For more information, please contact George Hoare, Special Sales, at george_hoare@mcgraw-hill.com or (212)
904-4069.

TERMS OF USE
This is a copyrighted work and The McGraw-Hill Companies, Inc. (ÒMcGraw-HillÓ) and its licensors reserve all rights in and to t he
work. Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and
retrieve one copy of the work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works
based upon, transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without McGraw-HillÕ s prior con-
sent. You may use the work for your own noncommercial and personal use; any other use of the work is strictly prohibited. Your
right to use the work may be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED ÒAS ISÓ. McGRA W-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR WARRANTIES
AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE
WORK, INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR
OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
TO IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its
licensors do not warrant or guarantee that the functions contained in the work will meet your requirements or that its operation will
be uninterrupted or error free. Neither McGraw-Hill nor its licensors shall be liable to you or anyone else for any inaccuracy, error
or omission, regardless of cause, in the work or for any damages resulting therefrom. McGraw-Hill has no responsibility for the con-
tent of any information accessed through the work. Under no circumstances shall McGraw-Hill and/or its licensors be liable for any
indirect, incidental, special, punitive, consequential or similar damages that result from the use of or inability to use the work, even
if any of them has been advised of the possibility of such damages. This limitation of liability shall apply to any claim or cause what-
soever whether such claim or cause arises in contract, tort or otherwise.

DOI: 10.1036/0072191082

Contents at a Glance

Chapter 1 Introduction to C# . 1

Chapter 2 C# Language Review . 15

Chapter 3 .NET, the Operating Environment for C# 69

Chapter 4 C# Language Comparisons . 109

Chapter 5 Working Within the Bounds of C# . 143

Chapter 6 Integrating Legacy Code with C# . 167

v
Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

This page intentionally left blank.

Contents

Acknowledgments . xi
Introduction . xiii

Chapter 1 Introduction to C# . 1
The Component-based Model of Software Design . 2
The .NET Approach to Component-based Software Development 5
What Is the .NET Framework . 6

.NET’s Common Language Runtime . 6

.NET’s Framework Class Libraries . 9

.NET Framework Tools and Utilities . 10
Why C# . 11
What Is C# . 13

Chapter 2 C# Language Review . 15
A Simple C# Program . 16

A Few More Comments on Main() . 17
Adding a Class to the Simple C# Program . 17

C# Types and Type Management . 18
Value Types . 19
Struct Type . 20
Enumerations . 22
Reference Types . 23
Type Comparisons . 25
Boxing and Unboxing . 25
Type Conversions . 26
Arrays . 27

vii
Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

Object-oriented Component Development in C# . 28
Object-oriented Features of C# . 29
Class Constructors and Destructors . 40
Methods . 42
Fields . 46
Properties . 46
Operator Overloading . 48
Delegates . 50
Events . 53

Namespaces in C# . 57
Declaring Namespaces . 58

Exceptions . 59
Attributes . 61
Indexers . 62
Writing Unsafe Code . 65
Documenting Code Using XML . 66
C# Coding Style . 68

Chapter 3 .NET, the Operating Environment for C# 69
Microsoft IL . 70

How the CLR Gets Loaded . 72
.NET Building Blocks . 76

Modules . 76
Assemblies . 76
Application Domains . 77

Building Modules and Assemblies . 78
Robust Version Control . 79
Built-in Metadata . 84

Attribute-based Programming . 86
Reflection . 88

Cross-language Interoperability . 93
Common Language Specification . 94
Common Type System . 95
Object-oriented . 96
Delegation and Events . 98

v i i i C # D e v e l o p e r ' s H e a d s t a r t

Memory Management Through Garbage Collection . 98
Garbage Collection Step-by-Step . 100
Finalization . 102
Strong and Weak References . 105

Thread Synchronization . 107

Chapter 4 C# Language Comparisons . 109
Comparing C# to C++ . 110
Comparing C# to Visual Basic.NET . 127
Comparing C# to Java . 132

Chapter 5 Working Within the Bounds of C# . 143
Deterministic Finalization . 144

Releasing Resources Explicitly . 146
Variable Declaration with the using Keyword . 147
Reference Counting . 150
.NET Finalization . 153

Multiple Inheritance . 154
ATLs Multiple Inheritance In-depth . 155
Containment . 156
Interface Implementation . 160

Macros . 162
Combining Macros with Interface Inheritance . 162

Templates . 164
Source Code Security . 166

Chapter 6 Integrating Legacy Code with C# . 167
Integration Approaches . 168
Calling COM Objects from C# . 169

Using the TLBIMP Utility . 171
The Runtime Callable Wrapper . 172
Method Return Values and HRESULTs . 173
COM Object Lifetime and Deterministic Finalization 174
Inheritance and RCW Objects . 174
COM Connection Points . 174
Threading of the RCW Components . 176

C o n t e n t s i x

The COM Callable Wrapper, Calling .NET Objects from COM 177
TLBEXP Utility . 178
REGASM . 184
COM Callable Wrapper . 185
Providing .NET Events to COM Clients . 187
Threading of .NET Components . 193
Additional COM Interoperability Attributes . 193
Additional .NET to Type Library Conversions . 194

Data Marshalling . 196
Strings and the MarshalAsAttribute . 196
Marshalling Objects . 197

Platform Invocation Services, Calling Unmanaged APIs from C# 199
Interoperability Through Managed C++ . 201
Migrating Code . 210
Summary . 211

Index . 213

x C # D e v e l o p e r ' s H e a d s t a r t

Acknowledgments

No book can be published by the author alone, and there are many people
who participated in making the publication of this one possible.

In addition to reading each chapter and checking for technical accuracy,
Bill Burris, the technical editor, helped with testing the code to make sure that it was
correct. Marcia Baker provided copy edit assistance, which is a role we admire, as it
is something we not only don’t have expertise in, we even lack the patience to try.
Timothy Madrid and Monika Faltiss masterfully coordinated routing the manuscript
to the appropriate places during tech edits and then through production. Thanks
especially to Monika for her extra time during the page proof stages as the corrections
were excessive. We also very much appreciate the effort that Ann Sellers put in to
making this possible. Her task was especially difficult as she was coordinating a
vast number of other publications that would not normally be her responsibility.
Her willingness, yet again, to be on the receiving end of Mark’s “unique comments
and perspectives” was considerably gracious.

Real World Technology, the company we work for, has been extremely gracious
in allowing us the time to write this book. Undoubtedly, neither of us would have
been able to do this exclusively outside of the office. This was all the more
appreciated because the timing coincided with the release of another version of
the company product.

Lastly, we are greatly indebted to our wives Elisabeth and Cathy. Writing a book,
even one that is only six chapters long, takes a lot of time, and we are well aware
that the rest of the world doesn’t just stop while the required work is getting done.
Elisabeth and Cathy gave of themselves well above and beyond anything that we
could have expected. They were incredibly patient and supportive while we toiled
away in the early mornings, late evenings, and weekends and even through a family
vacation. We are truly blessed by two spouses who are so willing to give of
themselves. We’d also like to thank the kids who gave up time with Dad so he
could work on “the book”.

xi
Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

This page intentionally left blank.

Introduction

Although C# was announced to the public less than a year ago, there are
already several C# books available and undoubtedly more will continue
to appear. With this in mind, C# Developer’s Headstart was designed to

be different. Rather than writing another book that focused almost exclusively on
explaining syntax, this book covers the syntax in 60 pages and then moves on to
some of the more complex and relevant issues relating to C#. By leveraging their
existing knowledge of programming, readers will be able to begin real-world C#
programming after reading this book.

What Programming Skills You Must Have
Since this book includes a complete overview of the C# language, it is not expected
that readers will have any prior knowledge of this new language before they begin
reading. However, the book is targeted at enabling developers to jump ahead into
programming with C#, rather than becoming bogged down in nitty-gritty syntax.
With this in mind, it is expected that the readers of this book will already be
programmers with experience in at least one other language. Given this experience,
readers of this book will find that they can quickly grasp the essential characteristics
of C# within one chapter and then begin examining some of the more difficult areas
of the language.

What Software You Will Need
To try all the examples in this book you will need to have installed the .NET
Framework SDK Beta 2 or later. This is installed automatically with the Visual
Studio.NET, but it can also be downloaded from Microsoft’s Web site and installed

xiii
Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

separately. The authors recommend that Windows 2000 or later be installed, but
the .NET Framework is supported on both the Windows 9x/ME and Windows NT
operating systems as well.

Don’t Forget: Code on the Web
Remember, the source code for all of the programs in this book is available
free-of-charge on the Web at http://www.osborne.com. Downloading this code
prevents you from having to type in the examples.

x i v C # D e v e l o p e r ' s H e a d s t a r t

CHAPTER

1
Introduction to C#

1

IN THIS CHAPTER:

The Component-based Model of Software Design

The .NET Approach to Component-based
Software Development

What Is the .NET Framework

Why C#

What Is C#

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

C# (pronounced C Sharp) is a brand new language developed by Microsoft
for its new .NET Framework. The .NET Framework is Microsoft’s
next development platform beyond Windows DNA for building

component-based software solutions. The .NET Framework reflects a huge effort on
the part of Microsoft and will most certainly impact most programming done for the
Microsoft platform in the coming years. As a developer or a manager of developers,
you need to know this technology and you need to know it sooner rather than later.
This book’s aim is to give you a head start on the C# language, as well as the key
features of the .NET Framework on which C# runs.

We expect that when you finish reading this book, you’ll have a basic understanding
of what C# is and you’ll understand how C# fits into the .NET Framework. As no
language or platform can do everything, we also want to give you a heads-up on
some of the current shortcomings of the C# language, so you’re prepared ahead of
time for them.

One last note before we start. We want to make every effort to be clear and concise in
our definitions, so you know exactly what we’re talking about. Marketing departments at
software companies around the world (and especially at Microsoft) have already started
muddying up the term “.NET” to mean everything from operating system functions,
back-end server platforms (“the .NET Server family”), and Web-based service offerings,
such as Microsoft’s Hailstorm initiative, to any new feature that has been put into a
software product for the last five years. The use of .NET in this book, however, should be
crystal clear. When we use the term .NET or .NET Framework, we refer specifically to
the bits provided by Microsoft on the .NET Framework SDK. When a feature or function
is exclusive to Visual Studio.NET (or VS.NET), then it will be explicitly mentioned.

The Component-based Model of Software Design
Before examining .NET specifically, it is helpful to consider some of the fundamental
reasons for which .NET was created. .NET is the current iteration of a technology
that has essentially gone through three significant phases. The first significant phase
occurred in the early 1990s with the development by Microsoft of a technology called
Object Linking and Embedding (OLE) used in OLE Automation. This technology
grew out of the need to interoperate the various Microsoft Office applications of the
time. Microsoft realized products like Microsoft Word and Microsoft Excel were
great individually, but sometimes users wanted to have Word documents that
included spreadsheets within them. Rather than duplicating all the code from
Microsoft Excel into Microsoft Word, Microsoft developed OLE, which enabled

2 C # D e v e l o p e r ' s H e a d s t a r t

documents from one program—Microsoft Excel, for example—to be embedded into
documents of a different type, such as Microsoft Word. On the surface, users could
insert a document from one application into another. Under the covers, however,
Microsoft had developed a key technology to enable one application to talk to another
application. Interapplication communication wasn’t limited to the embedding of one
document into another, however. Through OLE Automation, one application could
call in to a different application, so the first application could manipulate objects
located in the second program.

NOTE

One of the key purposes of the first .NET predecessor was to enable interprocess communication
with relative ease. Specifically, OLE provided a standard means for embedding a document of one
type into a document of a different type and enabling one application to manipulate objects
located in a different application.

The next significant phase in .NET evolution occurred with the introduction of
COM. As the functionality of a program increased, it became too large and complex
to be manageable. Program complexity tends to increase exponentially rather than
linearly with respect to the amount of code within an executable. Developers using
the monolithic approach (one large executable) must have intimate knowledge of
both their own code and a significant portion of the other code within the module.
In the monolithic approach, a small change in one part of the code could have
large and significant side effects in other locations of the program. Not only did
this increase development, but it also stretched the testing required to produce
quality software.

The solution to monolithic software was the component-based model. In the
component-based model, software programs are broken into components and
each component offers a different service or set of functionality. Software built
in this fashion is sometimes referred to as componentware. For example, rather
than writing one large executable that includes code for compressing files, sending
e-mail, and graphing various trends, developers realized breaking the program down
into separate modules was better: one for sending e-mail, one for graphing, and one
for compressing files. The separate modules are then combined and presented to the
user as one application, even though internally the application may be broken into
many different parts, either logically or physically.

When using the component-based approach, each module is independent. Thus,
each programmer must manage the complexity of only the component on which he
or she is working. Because each component is independent, the internals of one have
little or no effect on the internals of another. Through the divide-and-conquer

C h a p t e r 1 : I n t r o d u c t i o n t o C # 3

techniques of the component model, the complexity of the application is reduced.
Each component can even be tested independently of the systems into which it will
eventually be deployed.

NOTE

The component model reduces the overall complexity of software and significantly reduces the
ease of distributing development across multiple companies. Software companies can develop
components in the areas where they have expertise, while other companies combine components
from multiple companies into a fully functional software package.

Another significant advantage of the component-based model is that not all
functionality needs to be implemented by the component developer. If a developer were
to create a program for tracking expenses within a company, then this programmer
wouldn’t also have to write the e-mail program via which expense reports were to be
submitted. Instead, the developer would obtain an e-mail component written by another
company and simply call into that component to access such functionality. The same is
probably true of the spreadsheet control used to display the expenses to a user. Perhaps
even the reporting module could come from a third party. The component-based model
enables distributed development across multiple companies or departments. In this
manner, each company can write functionality in the area in which they’re experts and
use third party components from other companies when necessary.

Microsoft’s implementation of the component model was called the Component
Object Model (COM). COM essentially took OLE automation to the next level by
extrapolating the idea of interprocess communication to be intermodule communication.
Not only would applications be able to interact, but binary modules, such as DLLs,
could also be loaded into a process and objects within the DLLs could be accessed.
The objects within these DLLs are called COM components and the modules in
which the object code resides are called COM servers. (Note, the term “component”
is ambiguous within the COM community. Component sometimes refers to the
module within which the object resides—the COM Server—and, at other times, the
component is the object itself, whether or not the object is instantiated. Within this
book, the component refers to the object itself.).

The component-based model didn’t begin with COM. Prior to COM, developers
would use library modules that also provided a service. The problem with the
library-module approach was that it was both laborious and error prone, both to
loading libraries and to calling library functions. Libraries often couldn’t be found,
and if a version mismatch occurred, the results were usually rather ugly. In addition,
the library module lacked a standard methodology. No standard convention for
memory management or even a standard calling convention existed. Furthermore,

4 C # D e v e l o p e r ' s H e a d s t a r t

C h a p t e r 1 : I n t r o d u c t i o n t o C # 5

the library model was ill-suited to object-oriented programming and more appropriate
to procedural programming. The distinction is this: object-oriented programming
extends a basic data structure by defining functions that manipulate the structure and
are also owned by the structure. The library model usually just passes data structures
and calls functions, rather than passing objects and calling functions on those objects.

After the first release of COM came a technology called ActiveX. ActiveX controls
were components designed specifically to be hosted within other windows or forms
known as COM containers. Although not revolutionary, ActiveX significantly reduced
the amount of work necessary for creating COM controls by enabling developers to
implement only the interfaces that were relevant to their component. ActiveX wasn’t a
new generation in the .NET heritage but, rather, an improvement to the COM generation.

.NET appeared into this setting. Despite the tremendous offerings COM provided
to the component model of software development, it was still lacking in some
significant areas.

The .NET Approach to Component-based Software
Development
As we begin the third generation of the component model, we also start a new level of
interoperability. COM was developed to provide a standard binary communication
mechanism between modules. With .NET, the standard moves up from the binary
level into an intermediate language called Microsoft IL (MSIL) or simply IL.

NOTE

With .NET, the standard for intermodule communication moves up from a binary-calling
convention and memory-management standard into an intermediate language to which
all .NET languages must compile.

In other words, .NET replaces the calling conventions and memory management
standards of COM with an intermediate language into which all other .NET languages
will be compiled. The result is this: rather than programmers being concerned with
ensuring their code will interoperate with an established binary standard, the various
.NET language compilers enforce the interoperability by compiling code into IL that
automatically is compatible with other IL modules. Rather than developers ensuring
they’re appropriately performing memory management via reference counting, the
.NET technology takes care of automatically performing memory management
through a mechanism known generically as garbage collection. (The details of
the specific garbage-collection algorithm are discussed in Chapter 3.)

One of the key characteristics of IL code that enables many of the features found
in the .NET Framework is that metadata is an inherent characteristic of IL code.
Metadata is data about data; it describes the characteristics of the data. Every data
type definition within IL code includes metadata that accompanies the data type,
even after the code has been compiled from its .NET language (C#, VB, Managed
C++, and so forth) into IL code.

NOTE

A key portion of IL code is the metadata about the data types within a module.

Metadata isn’t limited only to the data types themselves but, in addition, the .NET
software modules themselves include metadata. This metadata is used at runtime to
determine the location of code, and then to load that code, so it can be executed.

What Is the .NET Framework
Now that you know where .NET came from, we’ll spend a bit more time defining what
it is. This section provides a brief definition that helps put .NET in context. The .NET
Framework and SDK itself can be thought of as three distinct technologies: a Common
Language Runtime (CLR), a Framework Class Library, and Tools and Utilities.

Each of these is briefly described here so you know what they are, but a detailed
description of the entire .NET Framework is beyond the scope of this book. Certain
key areas are discussed in various chapters; for example, deterministic destruction is
covered in detail in Chapter 5. The .NET Framework isn’t something easily consumed
or digested in a single sitting, but using C# makes gaining the benefits of .NET easy
without requiring intimate knowledge of it.

.NET’s Common Language Runtime
The CLR is the heart and soul of the .NET Framework, and is responsible for loading
and executing C# programs, as well as programs written in any other .NET language.
The CLR itself is hosted by Windows executables built for .NET, for ASP.NET in
Internet Information Services (as an ISAPI filter), and in Internet Explorer to enable
client-side programming. In addition, the CLR defines interfaces that allow it to be
hosted by custom applications if one of the existing options isn’t appropriate.

The significant architectural improvements in .NET aren’t specific to C# but, as a
.NET language, C# benefits from them. In fact, C# receives much of its power from

6 C # D e v e l o p e r ' s H e a d s t a r t

the .NET Framework and the CLR. A quick summary of the key features and
benefits of the CLR is as follows:

� Managed execution of MSIL, including type safety and garbage-collected
memory management

� Rich, built-in type system

� Security

� Interoperability with non-.NET software

� Improved deployment

� Common Language Specification (CLS)

Managed Execution
The significant portions of managed execution were discussed earlier but we should
mention the IL is Just-In-Time compiled into native executable code. This generates
a performance hit the first time the program is run, but subsequent executions are
quick. If desired, an assembly can also be pre-JITed, thereby removing the initial
first-time performance hit.

The managed execution environment also defines application domains that
provide an execution and security context over and above an assembly.

Type System
The CLR provides a type system common to all .NET languages and class libraries.
A variety of types are supported, including a set of integral and floating point data
types, as well as a fully featured string type, a date type, and an object type. The
object type serves as the root class for all other types in .NET.

The common type system is a critical element of .NET’s language interoperability
feature because .NET languages are removed from the burden of trying to define types
that can interoperate. At the same time, special language-specific types can be
constructed easily from the provided .NET base types.

Improved Deployment
Even with recent advances in software installation and configuration, deployment of
applications, both rich client and Web-based-applications, remains a cost-intensive
issue facing IT departments. For many functions, rich clients aren’t going away
anytime soon and advances in their deployment remain critical. In addition, as Web

C h a p t e r 1 : I n t r o d u c t i o n t o C # 7

servers become more prevalent, deployment and maintenance have become critical
for IT departments faced with deploying perhaps dozens of Web or intranet servers.
Even Web clients, especially those that include ActiveX downloads, can run into
client versioning issues.

.NET includes advances that allow side-by-side running of assemblies and facilitate
xcopy style deployment, in which files are simply copied to the destination computer
without needing to be registered. .NET includes the version information in the primary
key data of an assembly that allows multiple versions of the same assembly to run on the
same machine. If an existing application depends on a particular version of an assembly,
another application that comes with a new version of the same assembly won’t disturb
the original application.

.NET also provides the option of deploying assemblies privately or shared in the
Global Assembly Cache (GAC).

Robust Security Environment
Another critical issue facing the software industry today is security. Rampant virus
outbreaks have done much to waste both time and money. The .NET runtime directly
addresses this and related security issues with several key features.

Assemblies can be digitally signed, allowing verification of the author. This
prevents unauthorized code from executing, whether the code is executed from the
command line or if a currently running program calls it.

Even though you might be trusted, you might obtain and execute code that
shouldn’t be trusted. Of course, executing this code wouldn’t be your fault, but the
damage can occur anyway. .NET runtime security provides a security wrapper that
can enforce security even when unauthorized code is executed by an authorized user.

In the spirit of providing a robust and secure environment, the .NET runtime doesn’t
allow pointer-based access unless the pointers are executed in a secure context and the
security to execute this “unsafe” code has been specifically granted. This offers
another layer of protection against mishaps both intended and unintended.

Common Language Specification
The .NET Common Language Specification (CLS) enables language interoperability
on the .NET platform by defining the rules required for interoperability. The .NET
platform itself goes a long way toward making this possible, but without some
clearly defined rules, classes built in one language won’t be easily consumed by
another language.

The CLS itself defines the base types that must be supported by each of the .NET
languages, as well as conventions that should be followed. Finally, the CLS enables

8 C # D e v e l o p e r ' s H e a d s t a r t

independent third parties to create language compilers for .NET that can share in the
same interoperability features of the Microsoft-provided languages.

.NET’s Framework Class Libraries
Previous to .NET, direct access to significant portions of the operating system
library were exclusively available to C++ developers or were not well integrated.
In some cases, the functionality was even duplicated. The .NET Framework
combines and unifies significant work under .NET that has been done in different
system areas, such as XML, COM+, and data access (ODBC, OLE/DB, and ADO)
or in different tools, such as Visual Basic (VB), Visual C++, and Visual J++. The
result is a rich set of classes available to any language on the .NET development
platform whether or not Microsoft development tools (Visual Studio.NET) are used.

In each functional area addressed by the class libraries, you can see the evolution
from the prior platform including WinForms, ASP.NET, Web Forms, and Component
Services while, at the same time, the functionality is provided in an extensible and
easy to use class library.

WinForms
The .NET’s WinForm classes represent the merging of the usability of Visual Basic
forms, the power and flexibility of C++’s Microsoft Foundation Classes (MFC), and
the class library of Microsoft’s Windows Foundation Classes for Java into a rich
windows class library that breaks the language barrier. Unlike Visual Basic forms,
MFC, or the WFC, WinForms are available to any .NET language.

One advanced feature of WinForms is the support of visual inheritance. Consider
a base form class that embeds controls placed on the form. Classes that derive from
the base class inherit not only the code functions, but also any of the controls placed
on the form. This even extends to exposing the forms in a library-type assembly for
use by other assemblies.

Because WinForms are based on the .NET Framework, applications built using
WinForms are as easily deployed as any other .NET application, which means xcopy
and side-by-side deployment models are supported.

ASP.NET and Web Forms
ASP.NET provides an entirely new set of services and a much-improved programming
paradigm for Web development and deployment including built-in support for Web

C h a p t e r 1 : I n t r o d u c t i o n t o C # 9

Services and Web Applications. Again, as a .NET class library, the ASP.NET
classes are available to any language of the .NET platform.

Contrast this to the previous version of IIS, where getting access to another language
typically required using either VBScript or JScript to call a COM-based object.
A workable solution to be sure, but inevitably, this could lead to a cut-and-paste
development and “spaghetti script” in even the simplest cases.

A key force driving the .NET Framework and ASP.NET is the capability
to develop and deploy Web services rapidly. A Web service is a set of software
accessible via the Web, which provides some sort of service. This is much like a
COM component, except it’s Web-accessible, and supports an XML payload and
SOAP-based method calls. As such, a Web service is readily accessible to service
clients with minimum prior knowledge or special client-side infrastructure, such as
a type library.

Component Services Library
The .NET Framework class libraries also provide a complete implementation for
COM+ services. This includes access to transactions, connection pooling, pooled
objects, and queued components.

Using the framework classes, component services classes are easier to develop.
A developer simply derives from the ComponentServices base class. Attributes can
also be placed directly on classes and methods to configure and control transactions.

ADO.NET
ADO.NET represents the evolution of the data access methods from ODBC to
OLE/DB and ADO. Gone is the hybrid nature of OLE/DB for low-level access and
ADO for high-level access. And because ADO.NET is delivered as part of the class
library, you implement data classes by deriving from ADO.NET, instead of creating
brand new wrappers and embedding data access calls in them.

.NET Framework Tools and Utilities
The .NET Framework Software Development Kit (SDK) includes a couple dozen
tools and utilities, such as the base compilers for C#, as well as Managed Extensions
for C++, Visual Basic.NET, and JScript. The SDK also includes both command lines
and visual debuggers, along with all the tools and utilities required for managing and
deploying assemblies. Many of these tools are discussed throughout the rest of this
book. The following table lists some of the more significant of these tools.

1 0 C # D e v e l o p e r ' s H e a d s t a r t

C h a p t e r 1 : I n t r o d u c t i o n t o C # 1 1

AL Assembly generation utility.

ILDASM Disassembles a .NET assembly into IL code and manifest data.

ILASM Assembles MSIL into a .NET assembly.

TLBIMP Imports a COM type library.

TLBEXP Generates a COM-compatible type library file from a .NET assembly.

GACUTIL Loads and manages assemblies in the Global Assembly Cache (GAC).

REGASM Registers an assembly so it can be used by COM components.

Why C#
Now that you know what .NET is about, let’s begin a more in-depth focus on C#,
starting with why C# was invented in the first place. When many programmers first
heard of C#, they grumbled something like “Why did Microsoft have to come up
with a new language?” and “What’s wrong with Java?” A simple answer to these
questions isn’t available, but you should be able to answer that question by the time
you finish reading this book.

Let’s start answering it by describing a simple scenario you may be familiar with.
That scenario is as follows: “jock” programmer bangs out a COM component in
C++ that does some cool business function, and then writes a test application for that
component using Visual Basic. Why isn’t the same development environment used
for the test application? Clearly, the RAD paradigm of Visual Basic has merit. C#
and .NET are there to provide that RAD approach to all languages of the .NET
platform, while still providing a powerful and extensible object-oriented language.

To emphasize this point further, the following story is taken directly from these
authors’ own experiences. Real World Technology, the company the authors work
for, chose to develop using Visual Basic for the user interface of our applications
because VB was easy to use and there existed a large number of VB programmers.
We used C++ to build COM-based business components for speed, efficiency, and
the capability to build a rich set of classes to support an object-oriented design. This
model of programming in VB against COM-based components replaced an existing
proprietary script language and proprietary runtime for that script and extended
script libraries (DLLs). A whole host of advantages were gained by using
VB as the glue to join not only our own components together, but also to integrate
third-party components quickly and easily. As a result, the application’s business logic
is open to any environment that can speak COM. At the same time, efficiencies gained

with this development and deployment model let us rapidly expand the number of
features and functions our business objects supported without getting bogged down in
GUI changes. C++ lost out as glue that tied components together because of the high
cost of doing anything simple, which was also significant. VB lost out for developing
business components because C++ was better for building a high-performance, rich
and consistent business object model. C# and .NET are positioned so this product
development could all have been done in the same language, with no loss of openness
or minimizing the exposure of business logic the use of COM has afforded.

While you might think that’s an interesting story, we’re still left with questions
such as, “Why not extend an existing language to fill this void?” and “Isn’t this what
Java is for?” Let’s consider the first question by discussing C++ and VB, two languages
with popular compilers provided by Microsoft. (Note, while a number of C++ compiler
developers exist, only one provider exists for VB.)

C++ has benefited greatly from being a standardized component-oriented language,
but this is also its biggest curse. This is because C++ cannot rapidly mature to
incorporate new concepts required for interface and component programming, or
incorporate a rich runtime. It’s worth noting, this is the gap Java has effectively filled
for many developers.

In any event, by the time you get done extending C++ to include what’s required
for .NET and modern component-based programming, you have a completely
different and nonstandard language. An in-depth comparison of Visual C++ to C# is
provided in Chapter 4 and Managed Extensions to C++ are discussed in Chapter 6.
C++ programs are full of the extra “bits” and programming conventions required for
component programming. Changing the language to support these features natively
isn’t an option.

In fact, VB—because it’s controlled by Microsoft—has actually gone through
that metamorphosis and has caused no shortage of controversy in the VB developer
community. Visual Basic.NET is effectively a new language that leaves Visual Basic 6
(the prior version) behind. Even with that, VB has a stigma attached to it as not being a
“real programming language.” C# is an easy to use language that doesn’t have the stigma
of VB attached to it. It is expected that C++ programmers won’t be embarrassed to admit
they know or use C# and it’s well known that most C++ programmers apologize for
using VB whenever they get a chance.

While this might seem silly at first, if you think about what this means, it helps
provide useful insight into what C# is about. Even with many wizard-like modern
programming conveniences, component programming in C++ still requires extra
work that isn’t relevant to the solution at hand. VB (6 and prior) is incredibly more
“programmer efficient” for building simple Win32 applications. However, VB

1 2 C # D e v e l o p e r ' s H e a d s t a r t

C h a p t e r 1 : I n t r o d u c t i o n t o C # 1 3

becomes increasingly difficult to use as system sizes increase because of its lack of
true or deep object-orientation and limiting, though powerful, runtime.

Now we turn to Java. The story here is short, thanks to the outcome of Sun’s
lawsuit. Microsoft’s attempts to turn Java into a development platform for Windows
brought them the wrath of Sun’s lawyers. The outcome of this lawsuit has effectively
ruled out Java as a language choice for .NET. After reviewing everything in .NET,
and the different approaches taken, it’s tough to see how Java could have been used
as the language and not suffered the same fate as Visual Basic and C++ or, in effect,
turned into C# in some form anyway. Once the lawsuit concluded, Microsoft was
prevented from changing Java significantly enough to fit well within the .NET
environment.

Having no other real options, a new language designed specifically for the
platform was the only way to go. Whether this is exactly the way things went inside
Microsoft is difficult to say (probably even for most Microsoft insiders), but the
bottom line is this: with C#, Microsoft (and its inventors, Anders Hejlsberg and
Scott Wiltamuth) was able to design a language starting with a clean slate. What
they came up with is a clean, simple, and modern design that directly addresses the
needs for component-based software development.

What Is C#
With that as a prefix, we can now start to get into the C# language itself by describing
what it is.

As a new language, C# can be component-oriented from the ground up. It is built
to support key features of .NET natively. C# doesn’t need to maintain a legacy of
features or syntax. Constructs required to build components are native to the language.
This includes features such as properties, events, interfaces, and attributes. At the
same time, the language is designed in the C/C++ family, so it’s a language familiar
to C++ programmers.

C#’s goals are to provide a simple, efficient, productive, and safe component-oriented
language familiar to C/C++ programmers. C# is a fully object-oriented language
designed to build software components for the .NET Framework. C# is the de facto
language of the .NET Framework as indicated by the fact that key pieces of the .NET
Framework are actually coded in C#. Microsoft indicated “millions of lines” of C#
code were written by the time of the Microsoft Professional Developers Conference
in September 2000, at which C# and .NET were first officially introduced to the
developer community.

Some of the highlights of C# include:

� Object-oriented and type safe

� Type safety

� All types are objects, and developers can extend the type system
simply and easily

� A rich and complete set of class-based metadata is available, and
this metadata can be extended by the developer

� Key component constructs are native to the language

� Heap-based memory is automatically garbage collected

� Direct access to the vast .NET Framework class libraries

C# and the .NET Framework are a natural evolution of programming language
and services. For years, programmers have been requesting object inheritance and
better type safety in Visual Basic. Programmers have spent many, many hours
programming the plumbing of COM interfaces to build component-based systems.
C# and .NET are direct answers to these efforts.

C# and .NET continue the evolutionary movement of system-level responsibilities
from the realm of the application developer to the realm of the operating environment,
so developers can concentrate on what they’re paid to do: develop great applications.

1 4 C # D e v e l o p e r ' s H e a d s t a r t

CHAPTER

2
C# Language Review

15

IN THIS CHAPTER:

A Simple C# Program

C# Types and Type Management

Object-oriented Component Development in C#

Namespaces in C#

Exceptions

Attributes

Indexers

Writing Unsafe Code

Documenting Code Using XML

C# Coding Style

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

In this chapter, we review the key features of the C# language. A detailed
language review would be a book in itself, so the details in this chapter are
necessarily brief and to the point. However, all of C#’s features are covered, so

when you finish reading this chapter, you’ll have a complete picture of what the C#
language is and what you can accomplish with it. This language review serves as a
foundation for discussions in the later chapters.

A Simple C# Program
We start with the simplest C# program you can write, a slight variation on the classic
“Hello world!” When compiled, this code prints a text string out to the console.

NOTE

To compile and run the sample programs, the .NET Framework SDK must be installed.

class SimpleProgram

{

public static void Main()

{

System.Console.WriteLine("Hello, my name is Inigo Montoya");

}

}

Let’s review some of the basics of this program. First, all executable code in C#
is contained within a class definition. A class is a template for what an object looks
like and how it behaves. Second, notice that C# is syntactically similar to C++. Class
and method definitions are enclosed in braces and statements are terminated with
semicolons. In fact, most of the operators and the statement formatting of C++ are
preserved.

C# can be used to construct component libraries as well as full executable programs.
As shown in the preceding program, all executables require a Main() declaration. In
contrast, component libraries do not require a Main() declaration. C# doesn’t have
any built-in or predefined libraries other than those provided by .NET. One of these
is MSCORLib.dll, which C# provides default access to. It is through this that the
System.Console.WriteLine() method, used in the previous listing, writes the
specified string to the operating system command console. The Console class is

1 6 C # D e v e l o p e r ' s H e a d s t a r t

found in the System namespace which is why it is prefixed by “System.” Namespaces
are the way C# segregates the many .NET libraries into reasonable pieces.

The previous code can be compiled using the following command:

Csc.exe hello.cs

which generates an executable program called hello.exe.

A Few More Comments on Main()
Main() can return a value if it’s declared as int type instead of void. A string array
can also be specified that will receive command execution parameters passed into
the program. The following sample shows a Main() declaration that uses command
line arguments. The Main() method includes a declaration for an array of strings
called args. The args array includes any command line parameters passed to the
program when it executes.

class SimpleProgram

{

public static int Main(string[] args)

{

System.Console.WriteLine("arg 0 is {0}", args[0]);

return 0;

}

}

The following shows the results of executing the program:

C:\Chapter2\Simple Program Fred

arg 0 is Fred

Adding a Class to the Simple C# Program
Now that we’ve built a simple program, let’s add a second simple class to it.

class SimpleClass

{

public void SomeMethod()

{

System.Console.WriteLine("SomeMethod has been called.");

}

C h a p t e r 2 : C # L a n g u a g e R e v i e w 1 7

1 8 C # D e v e l o p e r ' s H e a d s t a r t

}

class SimpleProgram

{

public static int Main(string[] args)

{

SimpleClass sc = new SimpleClass();

sc.SomeMethod();

return 0;

}

}

We now have two class declarations. One for our simple class, and one that
includes Main(). If we want, we could include the SimpleClass declaration within
our initial class declaration, which would create nested classes.

Now that we have the basics covered, we move on to C# types and type management.

C# Types and Type Management
Types fall into one of two basic categories: value or reference. Value type variables
store their data directly and are allocated on the stack. Therefore, the memory for a
value type is released when the variable is no longer in scope. Reference type variables
store a reference or “pointer” to the type’s data, which is allocated on the heap.
Reference types are garbage collected by the run time when they’re no longer
referenced. (Garbage collection is discussed in detail in the next chapter.)

In C# there are no special intrinsic types per se. C# does provide special keywords
for several of the most common data types but these are essentially shortcuts to data
types defined within the Common Language Runtime. For example, the int type is
an alias to System.Int32, the object type is an alias to System.Object and the string
type is an alias to System.String.

NOTE

Many of the most common run time data types can be accessed using C# keywords rather than
specifying the explicit name found in the Common Language Runtime.

C h a p t e r 2 : C # L a n g u a g e R e v i e w 1 9

Value Types
The following table lists the C# intrinsic value types and what they’re aliases for in
the .NET run time.

C# Type Run-time Type Comments
int System.Int32 Signed 32-bit integer

uint System.UInt32 Unsigned 32-bit integer

long System.Int64 Signed 64-bit integer

ulong System.UInt64 Unsigned 64-bit integer

short System.Int16 Signed 16-bit integer

ushort System.UInt16 Unsigned 16-bit integer

byte System.Byte 8-bit unsigned integer

sbyte System.SByte 8-bit signed integer

float System.Single The float type ranges from 1.5 × 10-45 to 3.4 ×
1038 with a precision of 7 digits

double System.Double The double type ranges from 5.0 × 10-324 to
1.7 × 10308 with a precision of 15–16 digits

decimal System.Decimal The decimal type is a 128-bit type that can be
used for financial calculations. Decimal can
range from 1.0 × 10-28 to approximately 7.9 ×
1028 with 28–29 significant digits

bool System.Boolean True or false are the only valid values, while
conversion to integral types isn’t defined

char System.Char 16-bit Unicode character type

Because these types are derived from System.Object (by way of System.ValueType),
they include base object methods such as ToString(), GetType(), Equals(), and
GetHashCode(). The following sample illustrates some of the built-in functionality
of the native types.

using System;

class TypesSample

{

public static void Main()

{

2 0 C # D e v e l o p e r ' s H e a d s t a r t

int a = 5;

byte b = 255;

long c = 5000000;

Console.WriteLine(

"a is {0}, ToString returns {1}, Type is {2}",

a, a.ToString(), a.GetType());

Console.WriteLine("b is {0}, Type is {1}", b, b.GetType());

Console.WriteLine("c is {0}, Type is {1}", c, c.GetType());

double d;

d = Math.Pow(2, 100);

Console.WriteLine("d is {0}, Type is {1}", d, d.GetType());

bool e;

e = true;

Console.WriteLine("e is {0}, Type is {1}", e, e.GetType());

}

}

When this code is compiled and run, it displays the following results:

a is 5, ToString returns 5, Type is Int32

b is 255, Type is Byte

c is 5000000, Type is Int64

d is 1.2676506002282294E30, Type is Double

e is True, Type is Boolean

If you look carefully at the previous code, you can see the native type values and the
Type object returned from GetType() are passed directly to the Console.WriteLine()
method and no special formatting or conversion is required to output a string. Because
all types are derived from objects they all support the properties and methods of the
object class. Therefore, for example, all objects support the ToString() method.

Struct Type
Structs are similar to classes except they are value types designed to implement
lean and mean data types. Also, structs don't support inheritance, parameterless
constructors, or destructors. Structs do support methods and properties, and they

can implement interfaces, static and instance members, and static and instance
constructors.

NOTE

All data types that are declared as structs are value types. Value types are allocated on the stack.

Because structs are value types, they’re allocated on the stack and are allocated
and deallocated efficiently without requiring garbage collection. If the struct is too
large, however, passing it as a value parameter can become inefficient compared to
a class that simply passes the value of the reference. Therefore, developers should
keep structs relatively small, in the region of 16 bytes.

The following example shows a simple struct declaration.

using System;

struct SuperType

{

int m_int;

public SuperType(int value)

{

m_int = value;

}

public void Super()

{

Console.WriteLine("super type is {0}", m_int);

}

}

class TestSuperType

{

public static void Main()

{

SuperType si = new SuperType(5);

si.Super();

}

}

C h a p t e r 2 : C # L a n g u a g e R e v i e w 2 1

2 2 C # D e v e l o p e r ' s H e a d s t a r t

Notice that the implementation of this struct occurs within the declaration, rather
than in a separate file.

Enumerations
Enumerations define a set of values for data. Enumerations are considered value
types and, therefore, instances are allocated on the stack. The base type of an
enumerator may be one of byte, sbyte, short, ushort, int, uint, long, or ulong.
The default base type is int.

The following sample illustrates the declaration and use of enumerators:

using System;

class Enums

{

enum TheWays

{

North,

South,

East,

West

}

public static void Main()

{

TheWays way = TheWays.West;

Console.WriteLine("The way is {0}", way);

}

}

This sample produces the following results:

The way is West.

In addition, enumeration members can specify values explicitly in their declaration
and multiple members may share the same value.

enum TheWays

{

North = 1,

South,

C h a p t e r 2 : C # L a n g u a g e R e v i e w 2 3

East,

West,

ToSanJose = West

}

When no value is explicitly assigned, the first enumeration member has a value
of 0 and each of the other member’s value is the value of the previous member plus
one. Enumerations are based on the System.Enum type.

Reference Types
Now that you know about the basic value types, we move on to reference types. Any
class, interface, or delegate (to be defined later in the chapter) and the built-in types of
object and string are considered reference types. Variables of type reference don’t hold
the actual data for the object; instead, they hold a reference to the data. The data is
allocated on the heap and is automatically garbage collected when it’s no longer in use.

To reinforce how reference variables work, consider the following example:

using System;

public class SimpleClass

{

public int x;

public SimpleClass(int InitialValue)

{

x = InitialValue;

}

}

class EntryPoint

{

public static void Main()

{

SimpleClass c1 = new SimpleClass(1);

SimpleClass c2;

Console.WriteLine("c1 is {0}", c1.x);

c2 = c1;

c1.x = 2;

2 4 C # D e v e l o p e r ' s H e a d s t a r t

Console.WriteLine("c2 is {0}", c2.x);

}

}

Note, when c1 is copied to c2, c1 and c2 both refer to the same data. Furthermore,
changing the data in c1 changes the data in c2 because assigning c2 to c1 results in
both variables pointing to the same data storage location in memory. So, the results
from executing this program shows c2 will have a value of 2.

c1 is 1

c2 is 2

Strings in C#
Even thought strings are reference types, they behave a little differently. If we
perform the same operation with a string as we did with the class earlier, the results
are not the same. The following code illustrates the behavior.

using System;

class EntryPoint

{

public static void Main()

{

string s1 = "1";

string s2;

Console.WriteLine("s1 is {0}", s1);

s2 = s1;

s1 = "2";

Console.WriteLine("s2 is {0}", s2);

Console.WriteLine("s1 is {0}", s1);

}

}

Here is the output::

s1 is 1

s2 is 1

s1 is 2

Because string is a reference type, you might expect it to behave exactly as classes
do. String is an immutable type, however, its value may not be changed. When the
new value is assigned to s1, the original data is preserved and the s1 reference is

C h a p t e r 2 : C # L a n g u a g e R e v i e w 2 5

changed to refer to the new string data. While string performs well for most string
operations, it could prove quite inefficient for intensive in-string manipulations, which
is why .NET provides the System.StringBuilder class. This class can be used to
perform direct modifications to string data when they’re needed.

Type Comparisons
Once you have a variable, you inevitably want to compare it with another variable
using a comparison operator (==, !=, and so forth). However, you need to be aware
that type comparison behavior varies, depending on whether you’re comparing two
value types or two reference types. Value type comparisons are as you would expect
them: the comparison returns true if the values held are identical. Reference type
comparisons generally return true if the variables point to the same object.
Therefore, the comparison of two objects that contain the same data would not
be considered equal.

Interestingly, although string is a reference type, as we saw previously with
assignment, string behaves as a value type. The equality operator is overridden so a
string comparison returns true if the values being referred to are identical. String also
includes a static Compare method that can be used to perform case-insensitive
comparisons.

Boxing and Unboxing
Boxing is the name of the technique C# uses to convert a value type to object (or
System.Object) and unboxing is the name given to the conversion from an object
back to a value type. Any type, value, or reference can be assigned to an object
without an explicit conversion. If the source for the assignment is a value type, C#
allocates heap for the value’s data, and then assigns the reference to that data to the
object. Boxing is used whenever a conversion to object is required, either because
of explicit assignment or because of parameters being passed to a method call.
Unboxing moves a value type from an object reference to a value type. Note that
conversion rules apply to this assignment. In other words, a value type cannot be
unboxed to a different type without an explicit cast.

NOTE

Converting a value type to object (System.Object) is known as boxing.

The following example illustrates what happens when a value of type long is set to
object, and then the object is set back to a long. Note, the long to object conversion
occurs implicitly while the object to long conversion requires a cast. In the latter

2 6 C # D e v e l o p e r ' s H e a d s t a r t

case, the compiler does not know the original type. However, the run time certainly
knows and it validates the conversion before allowing it.

using System;

class BoxingSample

{

public static void Main()

{

// First, we do boxing

object o;

long Original = 300;

o = Original;

Console.WriteLine("o is {0}, type is {1}", o, o.GetType());

// now we unbox.

long Copy;

Copy = (long)o;

Copy += 5;

Console.WriteLine("Copy is {0}", Copy);

}

}

Boxing preserves type safety and performance with an object-based type system.
Note, also, manual coercing of values into reference types isn’t required.

Type Conversions
C# supports both implicit and explicit type conversions. Implicit conversions occur
without requiring a cast, while explicit conversions require a cast. The compiler
generates an error if an attempt is made to perform a supported explicit conversion
without a cast operator or if an illegal explicit cast is attempted. For a listing of the
valid conversions, check the Framework SDK documentation.

The conversion operation can be overridden so your custom classes can provide
either implicit or explicit conversions. It is recommended that conversions which can
have unintended side effects be overridden explicitly. The explicit cast should be a
signal to the user that the conversion may not be perfect. Casting a long to an integer
type, for example.

C h a p t e r 2 : C # L a n g u a g e R e v i e w 2 7

Arrays
C# supports single-dimensioned and multidimensioned arrays. Multidimensioned
arrays can be symmetric (rectangular) or jagged, which is an array of different
dimensioned arrays. C# array indexes are 0-based. C# also provides special syntax
for initializing arrays.

The following code sample shows simple array declaration, initialization, and use.

using System;

class ArraySample

{

public static void Main()

{

int[] ai = {10, 9, 6, 2};

Console.WriteLine("ai[0] is {0}", ai[0]);

Console.WriteLine("ai[2] is {0}", ai[2]);

}

}

The previous array initialization is shorthand syntax for the following:

int[] ai = new int[] {10, 9, 6, 2};

Note, the array size isn’t part of the type, so the declaration of ai can be set to any
size. In the previous case, it’s set to a variable width array containing four elements.

System.Array is the base class for all arrays and, therefore, all arrays inherit the
functionality of this class. The result is that any array can be iterated on using a foreach
loop because System.Array implements the ICollection interface. For example, the
integer array previously declared can be iterated on using the foreach statement.

foreach(int i in ai)

{

Console.Write("{0}\t", i);

}

Some additional methods of interest on System.Array include Sort,
BinarySearch, and Reverse.

Multidimensioned Arrays
A simple multidimensioned array of strings is shown in the following example:

using System;

class ArraySample

{

public static void Main()

{

string[,] ai =

{{"Allie","10"}, {"Emily","9"},

{"Johnny","6"}, {"Marian","2"}};

Console.WriteLine("ai[0] is {0}, {1}", ai[0,0], ai[0,1]);

Console.WriteLine("ai[2] is {0}", ai[2,0]);

}

}

This sample shows the nesting of array initialization. We have one set of braces
for the entire string, and then each of the primary elements of the array has its own
initialization statement.

Last, a nonsymmetric, or jagged, array can be declared and used as follows:

string[][] activities = {

new string[] {"piano", "basketball", "drawing"},

new string[] {"piano", "singing"},

new string[] {"basketball", "football", "swimming"},

new string[] {"chess"}

};

Because of the object-oriented nature of C# and .NET, only one base array type is
required because it can be used to manage an array of any type.

Object-oriented Component Development in C#
C# is designed for the efficient building of object-oriented software components.
Software components built in C# are built using classes. Key class constructs
including properties, methods, events, and interfaces are defined natively in the
C# language and are supported directly by the .NET platform.

2 8 C # D e v e l o p e r ' s H e a d s t a r t

C h a p t e r 2 : C # L a n g u a g e R e v i e w 2 9

In the following section, we first look at how object-oriented programming is
implemented in C#. Next, we discuss additional features of classes including the
access modifiers, methods, fields, properties, overloading, delegates, and events.

Object-oriented Features of C#
C# is, first and foremost, an object-oriented programming language. The exact
definition of what constitutes an object-oriented language is rather diverse. At its
core, however, an object-oriented language is one that can merge both data and
functions into one “black box” known as an object.

In this, C# implements object-oriented programming to the fullest extent. In C#,
everything from the simplest to the most complex data type is an object. This is
because everything derives from System.Object (everything except System.Object,
that is). In fact, if you write a C# class and don’t specify any base class, the resulting
object still derives from System.Object. In other words, declaring class Employee
without the explicit base class, as in:

class Employee

{

...

}

Is exactly the same as declaring the same class with the System.Object
specified in:

class Employee : System.Object

{

...

}

Object-oriented principals are used to such an extreme that even hard-coded
integers support the methods found on System.Object. For example, in C#, you can
code 5.ToString() and it returns a value. In this case, the string is simply “5” but,
nonetheless, the code does compile.

Inheritance
Several other object-oriented characteristics are provided in C#. First is the concept
of inheritance. Inheritance represents the relationship between two objects—A and
B—such that B is an A. For example, if object A was an Employee and object B

3 0 C # D e v e l o p e r ' s H e a d s t a r t

was a Doctor, then you could create a class hierarchy, such that B derived from A
because a doctor is a type of employee. The key in the inheritance relationship is
that by deriving object B from object A, object B inherits all the characteristics of
A. This is known as extending the base class. For example, if object A has a public
function called Name(), then object B would also have this function.

// build command: csc employee1.csc

//

public class Employee

{

public void Name()

{

//put the code that retrieves the employee name here

System.Console.WriteLine("employee name");

}

}

public class Doctor : Employee

{

}

public class EntryPoint

{

public static void Main()

{

Employee e = new Employee();

Doctor d = new Doctor();

e.Name();

d.Name();

}

}

.NET does not support an advanced form of inheritance called multiple inheritance.
At least .NET doesn’t support multiple inheritance between classes. With a class,
objects cannot be derived directly from more than one class. For example, because
a hospital employee could be both an employee and a patient, it could potentially
be derived from the two classes Employee and Patient. However, this data
structure isn’t possible with either C# or .NET. Chapter 5 includes a full

C h a p t e r 2 : C # L a n g u a g e R e v i e w 3 1

discussion of this potential short fall. But, for the moment, we can consider that
.NET does support multiple inheritance with interfaces, even if not with classes.

NOTE

There is no class multiple inheritance in C#.

Abstraction
To understand the value of interfaces, which is another key part of the C# language,
consider another object-oriented principal, abstraction. The purpose of abstraction is to
separate the behavior of an object from the implementation of that object. Consider, for
example, a function Call() applied to an employee. The implementation for how to call
may be reasonably specific to the type of employee being called. For example, to call a
doctor, a special answering service is required. This is different from a nurse, which
might have a direct-dial hospital extension. Both of these implementations of Call()
could be different from the janitor, however. In general, all employees have the function
Call(), but there is a difference in how this function is implemented within each
employee type. The concept of abstraction separates out the fact that an object has a
particular method (Call()) from the implementation of exactly how that method is
performed.

In the .NET world, as was the case with the COM paradigm, abstraction is
implemented through the use of abstract classes and interfaces.

The defining characteristic of an abstract class is that it cannot be instantiated.
Therefore, you cannot use the new operator on an abstract class. Abstract classes,
instead, define the methods and properties a deriving object must implement and the
deriving object is what can be instantiated. Abstract classes can support both public
and private methods, as well as properties. In addition, an abstract class can include
implementation code for its methods, exactly as a normal class does. Just like a
normal class, abstract classes don’t support multiple inheritance.

An interface is a description of the services an object provides to its client.
Because there is not much use in exposing services in private methods that clients
cannot access, all methods and properties on interfaces are defined as public. The
interface defines a contract between the client and the server. Both must abide by its
provisions for the client to use the server. If the client doesn’t use the same function
signatures that the server publicly declares, then the contract between the client and
the server is nullified and the call fails. Interfaces are a type of abstract class

3 2 C # D e v e l o p e r ' s H e a d s t a r t

(although not all abstract classes are interfaces). That is, interfaces are classes that
cannot be instantiated directly.

NOTE

All methods and properties on interfaces are defined as public automatically because their purpose
is to expose the behavior of the object.

The one other defining characteristic of an interface—and the one that separates it
from an abstract class—is that interfaces cannot include any implementation code. In
this manner, interfaces only define the metadata, the properties and methods, to be
required from any deriving classes.

NOTE

Interfaces cannot have any implementation code. They only contain the property and function
signatures that deriving classes require.

Let’s return briefly to the concept of inheritance and combine it now with interface
abstraction. In .NET, abstraction can be achieved via interfaces from which classes
derive to support the behavior that the interface defines. For example, you can define
an interface, such as IEmployee, and two classes that derive from this interface, such
as Nurse and Doctor. By placing a method called call()on the IEmployee interface,
you can force the Nurse and Doctor classes to implement the method.

// Build command: csc /t:library Interface1.cs

//

interface IEmployee

{

string call();

}

class Nurse : IEmployee

{

public string call()

{

}

}

class Doctor : IEmployee

{

public string call()

{

}

}

C h a p t e r 2 : C # L a n g u a g e R e v i e w 3 3

Deriving classes from interfaces is no different than deriving classes from other
base classes, except for one important characteristic. In the .NET world, multiple
inheritance, although not supported between classes, is supported at the interface level.
In other words, it’s possible to derive a class from two different interfaces. Taking our
earlier hospital employee example, we could create two interfaces—IEmployee and
ISalary—and have the Doctor class (or an IDoctor interface) derive from both of
them. The C# code is shown in the following code listing.

// build command: csc interface2.csc

//

namespace HospitalEmployees

{

using System;

interface IEmployee

{

string call();

}

interface ISalary

{

void CalculatePay();

}

class Nurse : IEmployee, ISalary

{

public string call()

{

}

public void CalculatePay()

{

Console.WriteLine("Pay the nurse");

}

}

class Doctor : IEmployee, ISalary

{

public string call()

{

}

public void CalculatePay()

{

3 4 C # D e v e l o p e r ' s H e a d s t a r t

Console.WriteLine("Pay the doctor");

}

}

}

As already discussed, the example wouldn’t compile if both IEmployee and
ISalary were declared as classes, rather than interfaces.

Polymorphism
A third key concept in object-oriented programming is known as polymorphism.
Breaking the word down yields the meaning “many forms.” Essentially, polymorphism
is the capability of a single class to behave in multiple ways. Polymorphism can be
applied in two ways—inclusion polymorphism and operation polymorphism— both of
which are supported by .NET. Inclusion polymorphism is directly implemented via
interface inheritance or through virtual function overrides. For interface inheritance,
given two objects A and B that are both derived from interface C, casting either A
or B to an object of type C, and then calling a method on C, is possible. In this way,
variables of type C may refer at run time to two different classes. The call is
polymorphic because the exact implementation of the method changes, depending on
whether the object cast to C is of type A or B. Let’s return to the hospital for another
example to help clarify the concept. In this example, we again have the two employee
types—doctors and nurses—and both are derived from the interface IEmployee. The
code follows:

// build command: csc Interface3.cs

//

namespace HospitalEmployees

{

using System;

interface IEmployee

{

string call();

}

interface ISalary

{

void CalculatePay();

}

class Nurse : IEmployee, ISalary

{

C h a p t e r 2 : C # L a n g u a g e R e v i e w 3 5

public string call()

{

}

public void CalculatePay()

{

Console.WriteLine("Pay the nurse");

}

}

class Doctor : IEmployee, ISalary

{

public string call()

{

}

public void CalculatePay()

{

Console.WriteLine("Pay the doctor");

}

}

class EntryPoint

{

static void SendMessage(IEmployee employee)

{

employee.Call();

}

public static void Main()

{

Nurse nurse = new Nurse();

Doctor doctor = new Doctor();

SendMessage(nurse);

SendMessage(doctor);

}

}

}

In this code, both the Doctor and the Nurse are passed to the function
EntryPoint.SendMessage(). This casts them each to IEmployee. However, when

3 6 C # D e v e l o p e r ' s H e a d s t a r t

SendMessage() is called, the outputs for each function are different because the
implementation is different. This is one way in which C# achieves inclusion
polymorphism.

Inclusion polymorphism can also be achieved through the use of virtual functions.
Given class C, which implements a virtual method V, classes that derive from C, A,
and B can override the virtual function to perform object-specific actions. When A
or B is cast to C, calls to V from C are dispatched to either A or B. The following
example achieves the same inclusive polymorphism result as the previous example,
except it uses a virtual method.

// build command: csc Employee2.cs

//

namespace HospitalEmployees

{

using System;

class Employee

{

public virtual void Call()

{

Console.WriteLine("calling employee");

}

}

class Nurse : Employee

{

public override void Call()

{

Console.WriteLine("calling the nurse");

}

}

class Doctor : Employee

{

public override void Call()

{

Console.WriteLine("calling the doctor");

}

}

class EntryPoint

{

C h a p t e r 2 : C # L a n g u a g e R e v i e w 3 7

public static void Main()

{

Employee e = new Employee();

e = new Nurse();

e.Call();

e = new Doctor();

e.Call();

}

}

}

In this example, a particular employee instance, whether it be a Doctor or a
Nurse, is cast to e, which is of type Employee. Later on in the WriteLine() code,
the Employee object e behaves according to the type it was assigned from.

Where the previous example becomes a little hairy is when you consider versioning
of the Employee. Using the previous example, let’s say another assembly, one you
don’t have source code access to, is providing the Employee base class. You decide
your derived classes should have a Shift() method to track the employee’s shift. So,
you place a Shift() method on your Nurse class. The original developer of the
Employee class might hear of this and decide Shift() would be a good thing for all
users of the Employee class to have, so they would add this new method to Employee.
Which Shift() method will be used by your classes derived from Employee? By
default, your Nurse class will hide the Shift() method in the base class. This is true,
regardless of the type of the member, be it a field, property, or other member type.
If you don’t recompile your code, and you use the new Employee library as is, your
method will hide the method in the base class and virtual dispatching won’t be
performed. If you rebuild your Employee-based components (with no further
modification to the code) using the new library, the C# compiler then generates a
warning, but still hides the base class. You can eliminate the warning by placing either
the new or the override modifier on your class. Using the new keyword continues to
hide the base method.

Overloading
The previous samples illustrate inclusion polymorphism. The second type of
polymorphism is known as operation polymorphism. With operation polymorphism,
no inheritance relationship exists between objects. The most common form of
operation polymorphism uses overloading. With overloading, multiple functions

3 8 C # D e v e l o p e r ' s H e a d s t a r t

with the same name are created; however, the parameters on each function vary.
The result is that a programmer can call the function using the function name and the
particular version of the function called is the one that matches the calling signature.
Consider the following example:

// Build command: csc Employee3.cs

//

namespace HospitalEmployees

{

using System;

class Nurse

{

}

class Doctor

{

}

class EntryPoint

{

static void Call(Nurse n)

{

Console.WriteLine("calling the nurse");

}

static void Call(Doctor d)

{

Console.WriteLine("calling the doctor");

}

public static void Main()

{

Nurse nurse = new Nurse();

Call(nurse);

Doctor doctor = new Doctor();

Call(doctor);

}

}

}

Notice that Nurse and Doctor no longer derive from Employee. Instead, two
different Call() functions have been created: one takes Nurse as a parameter and the

C h a p t e r 2 : C # L a n g u a g e R e v i e w 3 9

other takes Doctor. The result is Call(nurse) calls static the method void Call(Nurse
nurse) and Call(doctor) calls static the method void Call(Doctor doctor). With operation
polymorphism (overloading), the multiple forms occur at the function level, rather
than at the class level. The same function, defined by its name, takes multiple forms.

Encapsulation
For the same reasons that encapsulation is important to object-oriented programming,
it’s important to .NET components: encapsulation provides a way to bind together
code and data, keeping both safe from outside interference or misuse. Through
encapsulation, the user of a component need know only how to interact with the
component, not how it works. The user of a component doesn’t need to know the
format and layout of the data within the component and its algorithms. And the user
needn’t know in what language the module was written. Only the proper method of
interfacing with the component needs to be understood. Encapsulation hides the
internal workings of a particular class while, at the same time, providing the capability
of appropriately exposing the methods and properties the developer chooses.

C# supports four scope modifiers that provide five different ways to declare the scope
of a method or property. First, public can be used to declare that a method or property
is available to all objects, regardless of their relationship to the class containing the
method or property. Second, private can be used to indicate that only the class that
owns the method or property can access the method or property. Third, protected is
used to scope a property or method, so only the class owning the method or property
or any of the classes’ decedents can access the property or method. Fourth, internal
is used to scope a property or method within an assembly only. Internal scope can be
used to hide classes from users of an assembly, yet still provide “public” access from
within the assembly. Last, internal protected methods and properties are only
available to the assembly or to derived classes. With the exception of internal, these
scope rules closely match those provided by C++, once again reflecting C#’s heritage.

NOTE

Encapsulation provides a way to bind together code and data, keeping both safe from outside
interference or misuse.

In addition to control over scope, the developer also has control over whether a
given class can be derived from using the sealed modifier. Sealed applies to a class
only, and prevents a different class from inheriting it. While there aren’t many
instances in which it’s appropriate, sealed can be used to indicate that a class is
deprecated or that it provides a special static function.

Class Constructors and Destructors
A class can declare a constructor to initialize itself. Both static and instance-based
constructors are supported. Static constructors are called automatically when a class
is first loaded, while instance constructors are called whenever a new instance of the
class is created. Constructors can be overridden and overloaded to provide special
initializations. The following example illustrates a static constructor and various
overloaded instance constructors:

// build command: csc ctor.cs

//

namespace CSharpHeadStart

{

using System;

class CtorTest

{

static CtorTest()

{

Console.WriteLine("CtorTest() static constructor");

}

public static void MethodA()

{

Console.WriteLine("static method MethodA()");

}

public CtorTest()

{

Console.WriteLine("CtorTest() instance constructor");

}

public CtorTest(int IntValue)

{

Console.WriteLine("int CtorTest({0})", IntValue);

}

public CtorTest(string StringValue)

{

Console.WriteLine("string CtorTest({0})", StringValue);

}

}

class EntryPoint

{

public static void Main()

4 0 C # D e v e l o p e r ' s H e a d s t a r t

C h a p t e r 2 : C # L a n g u a g e R e v i e w 4 1

{

Console.WriteLine("started");

CtorTest.MethodA();

Console.WriteLine("after static method");

CtorTest ct = new CtorTest();

CtorTest ct2 = new CtorTest(24);

CtorTest ct3 = new CtorTest("test");

Console.WriteLine("ended");

}

}

}

Executing this code produces the following output:

started

CtorTest() static constructor

static method MethodA()

after static method

CtorTest() instance constructor

int CtorTest(24)

string CtorTest(test)

ended

Constructor methods are not inherited; so you cannot override a constructor in the
base class. The parameterless base class constructor is invoked by default from a
derived class unless another constructor is explicitly invoked using the base
keyword, as shown next.

public CtorTest() : base(5)

{

...

}

If no constructor is defined in a derived class, the base constructor is still called.
A static constructor (a constructor declared with the static keyword), is always the
first method called on a class, but is only called if the class is used.

Default parameters for the constructor can be supplied by manually invoking
an alternate constructor from the constructor method invoked by the client. For
example, if the default constructor from the previous sample is modified as follows,
then the int overloaded constructor is called prior to this constructor.

public CtorTest() : this(5)

{

4 2 C # D e v e l o p e r ' s H e a d s t a r t

Console.WriteLine("instance constructor called");

}

It is a good idea is to locate all initialization in one constructor when overloaded
constructors are required. The previous constructor includes the WriteLine() only
to illustrate that both constructors are called. Here’s the output from the modified
sample, showing the int constructor being called twice—once before the default
instance constructor and once after:

started

CtorTest() static constructor

static method MethodA()

after static method

int CtorTest(5)

CtorTest() instance constructor

int CtorTest(24)

string CtorTest(test)

ended

Destructors can be declared to clean up any unmanaged resources used by the
class. Destructors are declared using the standard C++ style syntax. A destructor
for the previous class is declared as follows:

~CtorTest()

{

Console.WriteLine("finishing up.");

}

Unlike C++ destructors, the C# class destructor isn’t called immediately after
the class instance goes out of scope. Furthermore, the destructor cannot be called
explicitly. Instead, the garbage collector calls the destructor at an indeterminate time
after all references are removed. Garbage collection and finalization are discussed in
further detail in Chapter 3. Chapter 5 discusses the approaches to the problem of the
lack of deterministic destruction.

Methods
Methods can take a list of parameters and can also return a value. Methods may
either be of type static or instance. Static member methods are available without

C h a p t e r 2 : C # L a n g u a g e R e v i e w 4 3

an instance of the class, while instance methods must be called from an object
instance. Main() is a good example of a public static method.

Method Parameters
By default, method parameters are passed by value. If you want to write a function
that can change a value and have it remain changed when it returns to the caller,
however, you can use the ref keyword in the method declaration as follows:

public void TestValue(ref ValueClass vc)

A value must be set by the caller prior to the method call, otherwise, the C#
compiler generates an error. As previously mentioned, changing the data pointed to
by a reference data type inside a method call causes the object instance to change
and that change remains even after the function returns regardless of whether the ref
keyword is used. Therefore, modifications to the object made by the method are
made directly to the object itself. If a reference type parameter is declared with the
ref keyword, the method can modify the reference value, the pointer. This enables
the method to change what a reference is pointing to. The following example
illustrates a reference parameter combined with a reference type. It illustrates that
when a reference type is passed, the reference itself is modified.

// build command: csc refparam.cs

//

using System;

class ValueClass

{

public int aValue = 1;

}

class SimpleClass

{

public void TestValue(ref ValueClass vc)

{

Console.WriteLine("TestValue: Initial value is {0}", vc.aValue);

vc.aValue = 2;

Console.WriteLine("TestValue: Value after is {0}", vc.aValue);

ValueClass vc2 = new ValueClass();

vc2.aValue = 22;

vc = vc2;

}

}

class SimpleProgram

{

public static void Main()

{

SimpleClass sc = new SimpleClass();

ValueClass vc = new ValueClass();

Console.WriteLine("Main: Value before is {0}", vc.aValue);

sc.TestValue(ref vc);

Console.WriteLine("Main: Value after is {0}", vc.aValue);

}

}

If you’re used to managing your own memory in languages like C++, you might
be ready to pick up the phone, call the authors, and tell them about the object they
just dropped on the floor. Before you pick up the phone, remember C# provides
automatic garbage collection. The ValueClass object reference disconnected in
the TestValue() method is cleaned up by the .NET garbage collector.

A special form of reference parameter—output—may also be used. A method
indicates that a parameter value will definitely change using the out keyword.
Because the parameter definitely changes in the method call, the caller isn’t required
to initialize an output parameter prior to the method call. However, the method is
required to set the value; otherwise, a compile error is generated. The following
sample shows use of the out parameter modifier combined with a reference type:

// build command: csc outparam.cs

//

using System;

class ValueClass

{

public int aValue = 1;

}

class SimpleClass

{

public void TestValue(out ValueClass vc)

{

ValueClass vc2 = new ValueClass();

4 4 C # D e v e l o p e r ' s H e a d s t a r t

vc2.aValue = 22;

vc = vc2;

Console.WriteLine("TestValue: value is {0}", vc.aValue);

}

}

class SimpleProgram

{

public static void Main()

{

SimpleClass sc = new SimpleClass();

ValueClass vc = new ValueClass();

Console.WriteLine("Main: Value before is {0}", vc.aValue);

sc.TestValue(out vc);

Console.WriteLine("Main: Value after is {0}", vc.aValue);

}

}

In summary, initialization of output parameters are the responsibility of the
method and initialization of reference parameters are the responsibility of the caller.

Variable Parameter Methods
The params modifier provides support for a variable number of arguments in method
calls. All variable parameters must be of a single type. The following sample shows
a method that uses params to accept a variable number of objects:

// build command: csc params.cs

//

using System;

class SimpleProgram

{

public static void DumpParameters(params object[] args)

{

Console.WriteLine("Dump Parameters: ");

for(int iArg = 0; iArg < args.Length; iArg++)

{

Console.WriteLine("{0}:{1}", iArg, args[iArg]);

}

}

C h a p t e r 2 : C # L a n g u a g e R e v i e w 4 5

4 6 C # D e v e l o p e r ' s H e a d s t a r t

static void Main(string[] args)

{

DumpParameters("one", "two", 3);

DumpParameters(2.2, 85, 42, "fred", "barney", "wilma", "betty");

DumpParameters();

}

}

Note, because the variable parameter list is declared as an array, the method call
may also take a single array of the appropriate type. This is demonstrated in the
following code snippet:

object[] SomeParams = {"x", "y", "z", 1, 2, 3};

DumpParameters(SomeParams);

Fields
A field is defined as any class variable of any type. Although fields may be declared
using any of the member accessibility attributes previously defined (public, private,
and so forth), the recommendation is that fields only be declared as private member
variables. To expose field values, add a property as described in the next section.

Two additional modifiers can be applied to fields. Constant fields can only be
modified when they’re initialized at class declaration time and these are designated
using the const modifier. Because of the initialization constraints, const types can be
of value type, a string constant, or the special type null. In contrast to constant fields,
read-only fields are declared using the readonly modifier and are a bit more flexible
because the fields can be set inside the class constructor.

Properties
Properties are effectively methods with a built-in pattern for setting and getting a
value. Using a built-in pattern establishes a syntax, which is supported and enforced
by the compiler and not the developer. Properties don’t natively exist in C++ and
Java and, therefore, programs written in C++ and Java require custom-style
conventions be followed to help ensure readable code.

NOTE

Fields should be declared with a private scope and then the values exposed outside the class
using a property.

C h a p t e r 2 : C # L a n g u a g e R e v i e w 4 7

The following example shows how to declare a property:

// Build command: csc properties.cs

//

using System;

class SimpleClass

{

private int propertyValue = 24;

public int AProperty

{

get

{

return propertyValue;

}

set

{

propertyValue = value;

}

}

}

class SimpleProgram

{

public static void Main()

{

SimpleClass sc = new SimpleClass();

Console.WriteLine("Property initial value: {0}", sc.AProperty);

sc.AProperty = 5;

Console.WriteLine("New property value: {0}", sc.AProperty);

}

}

The method invoked when a property is read is the get accessor, while the method
invoked when a property is modified is the set accessor. The get accessor uses the
keyword return to return the value property to the caller. The set accessor provides
the value keyword, which provides access to the assigned value. Property
declarations can use all method modifiers including new, virtual, override, or
abstract. A read-only property is implemented by not implementing a set accessor.

In addition, C# exposes the property as metadata, which helps make the class
libraries easier to use.

NOTE

A read-only property is implemented by not implementing a set accessor.

Properties in C# expose similar functionality to fields, but they offer a greater
degree of control. Properties are methods invoked when the value of the property is
read or modified. This allows a class to further encapsulate its function. Properties
are an improvement over plain methods because they provide an explicit syntax and
intent for the class implementation, while providing a mechanism for class users
that’s no different than a field. Although this isn’t specifically required, the
recommendation is that fields are exposed as properties. This provides maximum
protection from future implementation changes to users of the class.

Operator Overloading
C# supports operator overloading of all the standard unary and binary operators, as
well as implicit and explicit conversion operators. Operator overloading gives you
the opportunity to customize what these operators mean to your class or struct.

The overloadable operators are +, -, !, ~, ++, —, true, false, *, /, %, |, ^, <<, >>,
==, !=, >, <, >=, and <=. No other operators, including the assignment operator can
be overloaded. Also note, comparison operators must be overloaded in pairs or
groups (<> and == with != for example). The following sample illustrates the
implementation of a simple Vector type that includes the capability to add and
subtract, as well as to compare vectors. The equality operator, (==) and the nonequality
operator != are overloaded and an explicit conversion from int to Vector is provided.

// build command: csc vector.cs

//

using System;

public struct Vector

{

int x;

int y;

int z;

public Vector(int x, int y, int z)

4 8 C # D e v e l o p e r ' s H e a d s t a r t

{

this.x = x;

this.y = y;

this.z = z;

}

public static Vector operator +(Vector v1, Vector v2)

{

return new Vector(v1.x + v2.x, v1.y + v2.y, v1.z + v2.z);

}

public static Vector operator -(Vector v1, Vector v2)

{

return new Vector(v1.x - v2.x, v1.y - v2.y, v1.z - v2.z);

}

public static bool operator ==(Vector v1, Vector v2)

{

return v1.Equals(v2);

}

public static bool operator !=(Vector v1, Vector v2)

{

return !(v1 == v2);

}

public override bool Equals(object Value)

{

Vector vectorValue;

vectorValue = (Vector)Value;

return ((this.x == vectorValue.x)

&& (this.y == vectorValue.y)

&& (this.z == vectorValue.z));

}

public override int GetHashCode()

{

return this.x + this.y + this.z;

}

public override string ToString()

{

return x + "," + y + "," + z;

}

// supply an int to vector conversion

public static explicit operator Vector(int Value)

{

C h a p t e r 2 : C # L a n g u a g e R e v i e w 4 9

return new Vector(Value, Value, Value);

}

}

class EntryPoint

{

public static void Main(string[] args)

{

Vector v1 = new Vector(1, 1, 1);

Vector v2 = new Vector(2, 3, 4);

Vector v3 = v1 + v2;

Console.WriteLine("v1 is {0}", v1);

Console.WriteLine("v2 is {0}", v2);

Console.WriteLine("v3 is {0}", v3);

Vector v4 = v2 - v1;

Console.WriteLine("v4 is {0}", v4);

if(v1 == v4)

{

Console.WriteLine("how'd that happen?");

}

else

{

Console.WriteLine("v1 does not have the same value as v4");

}

Vector v5 = (Vector)5;

Console.WriteLine("v5 is {0}", v5);

}

}

Delegates
In the next two sections, we discuss delegates and events. To aid in this discussion,
we use the terms server and client. Server is defined as a set of classes as well as the
object instances created from those classes, and the client is the user of these objects.
In most of the examples listed previously in this chapter, the sample classes are the
server, and the class we typically call “EntryPoint” is the client.

5 0 C # D e v e l o p e r ' s H e a d s t a r t

C h a p t e r 2 : C # L a n g u a g e R e v i e w 5 1

The standard dictionary definition for delegate is “a person acting for another.”
A C# delegate is, effectively, a method acting for another. This level of indirection
provides critical functionality when a server needs to call a client.

To help illustrate that point, consider some example applications where delegates
can be used. First, consider a data server built to process a special data structure that
enables clients to provide custom methods to process the data. The server can be
written in advance of, and without prior knowledge of, the custom processing
methods. Second, consider a system device driver that receives signals from a
device, and then raises events within the application. The device driver cannot be
written with prior knowledge of every application that will be interested in device
events. Delegates provide a well-defined and rigorous method for clients to register
their interest in an event dynamically and long after the device driver is written.
And, last, many Windows API functions require callback methods. In a manner
similar to events, a library of functions, such as the Windows API, occasionally
needs to provide users (or clients) of the library with a way to hook its functionality.
Delegates provide a type safe approach for achieving callback functionality in C#.

You need to be concerned with three basic elements when using delegates. First,
the delegate type declaration identifies the method signature that must be used.
Second, delegate methods are any function, in any class, that matches the delegate
type declaration exactly. Last, the delegate instance holds references to methods and
is used to invoke the methods. References to the delegate methods are added to the
delegate instance. Delegate methods may be static- or instance-based.

In a typical scenario, the server sets up the infrastructure required to invoke the
delegate methods, and the client creates the delegate method and tells the server about
it. The server object can then execute a delegate method using the delegate instance
whenever the server deems appropriate. Essentially, the server says to clients: “If you
define a function using this specification and you tell me about it, I’ll call it for you
whenever it’s appropriate.” The client says to the server: “Here’s a function for you to
call as needed. It matches your requirements for a method signature.” In fact, the C#
compiler ensures the method signature matches.

The following sample shows a delegate declaration and how to use it.

// build command: csc delegates.cs

//

namespace CSharpHeadStart

{

using System;

// delegate declaration

delegate void CallEmployeeDelegate();

public class Doctor

{

// delegate method

public void CallDoctor()

{

Console.WriteLine("calling doctor");

}

}

public class Nurse

{

// delegate method

static public void CallNurse()

{

Console.WriteLine("calling nurse");

}

}

public class EntryPoint

{

public static void Main()

{

Doctor doctor = new Doctor();

// delegate instance

CallEmployeeDelegate d1 =

new CallEmployeeDelegate(doctor.CallDoctor);

d1();

// second delegate instance

CallEmployeeDelegate d2 =

new CallEmployeeDelegate(Nurse.CallNurse);

d2();

// third delegate instance

CallEmployeeDelegate d3 = d1 + d2;

d3();

}

}

}

5 2 C # D e v e l o p e r ' s H e a d s t a r t

In the previous code, both Doctor and Nurse provide methods that match the
prototype declared by the delegate, but Doctor provides an instance method and
Nurse provides a static method. Delegate instances d1 and d2 are declared and
initialized with these method names, so the delegate instances can be used to invoke
the methods. Because Doctor provides an instance-based implementation, Doctor object
must be created before its delegate method can be used. The Nurse.CallMethod() can
be used directly because it’s static. Finally, a third delegate is declared, and d1 and d2
are added to it. The delegate supports this because it’s a multicast delegate. A delegate
will be a multicast delegate if it is declared as returning void and doesn’t have any
output parameters. Delegate methods may be combined in a single multicast delegate
instance. When the delegate d3 is invoked, both the d1 and the d2 delegate methods
are invoked. Delegate methods can be added to and removed from a multicast delegate
instance at any time.

Programmers sometimes ask why multicast delegates cannot return a value or output
parameters. The reason is pretty straightforward: because the server automatically
invokes all delegate methods at once, it has no way to process individual return values.

Events
C# also supports the explicit declaration of events on classes. Events formalize
the structure used in the delegate sample previously illustrated. With an event, the
intention of the server to be responsible for raising the event is made clear. Events
can be implemented as properties with add and remove accessors. This provides a
way to tune the implementation of the event. For example, allocating any resources
required to raise the event can be postponed until a listener is added.

The following code implements a simple hospital patient monitoring system. The
server class PatientMonitor implements an event to be raised whenever the patient
needs attention. A parameter is included on the event that indicates whether the
situation is an emergency. Doctor and Nurse classes are implemented to listen for
events from the PatientMonitor and the PatientMonitor includes an internal timer
used to simulate patient events. When the timer in PatientMonitor fires, the timer’s
event handler raises the monitor event for the patient.

// csc patientmonitor.cs

//

namespace CShartHeadStart

{

using System;

using System.Timers;

C h a p t e r 2 : C # L a n g u a g e R e v i e w 5 3

5 4 C # D e v e l o p e r ' s H e a d s t a r t

/// MonitorDelegate is used to inform clients

/// that a PatientMonitor event has occurred.

/// IsEmergency is True indicates that the event is an emergency.

public delegate void MonitorDelegate(bool IsEmergency);

class PatientMonitor

{

// private value that indicates

// an emergency situation

private bool emergencyFlag;

// delegate instance that manages

// listening delegate methods

private MonitorDelegate monitorEvent;

// private timer used to automatically

// trigger patient calls

private Timer sleepTimer = new Timer();

// event delegate property that wraps our

// private delegate instance

public event MonitorDelegate MonitorEvent

{

add

{

// We don't bother with the timer

// unless at least one client is listening

// If there's more than one client,

// we still only need one clock.

if(monitorEvent == null)

{

StartMonitorTimer();

}

monitorEvent += value;

}

remove

{

// if all delegates are removed,

// we can stop the timer

monitorEvent -= value;

if (monitorEvent == null)

{

sleepTimer.Enabled = false;

}

}

}

/// An internal timer is used to simulate

/// monitor events

/// In our demo, the monitor goes off every 2 seconds

/// and alternates between a normal call or an

/// emergency call

private void StartMonitorTimer()

{

sleepTimer.Tick += new EventHandler(OnTimedEvent);

sleepTimer.Interval = 2000;

sleepTimer.Enabled =true;

}

/// When the timer Tick event is raised,

/// we fire our monitor event

void OnTimedEvent(object source, EventArgs e)

{

// Indicate whether this is an emergency

FireMonitorEvent(emergencyFlag);

emergencyFlag = !emergencyFlag;

}

// FireMonitorEvent fires event delegates if

// there are any.

public void FireMonitorEvent(bool IsEmergency)

{

Console.WriteLine("Monitor Event!");

if(monitorEvent != null)

{

// Use the private delegate instance to invoke

// the delegate methods

monitorEvent(IsEmergency);

}

}

}

// The doctor listens for patient monitor events

class Doctor

{

C h a p t e r 2 : C # L a n g u a g e R e v i e w 5 5

public void MonitorEventHandler(bool IsEmergency)

{

Console.Write("Doctor, Message From Patient Monitor: ");

if(IsEmergency)

{

Console.WriteLine(" Emergency!");

}

else

{

Console.WriteLine(" Please Call.");

}

}

// In the constructor for Doctor,

// we receive a PatientMonitor instance

public Doctor(PatientMonitor PatientMonitorObject)

{

// Add our delegate method to any existing

PatientMonitorObject.MonitorEvent +=

new MonitorDelegate(this.MonitorEventHandler);

}

}

// A nurse listens for patient monitor events

class Nurse

{

// create a method that can be used as a monitor delegate

public void MonitorEventHandler(bool IsEmergency)

{

Console.Write("Nurse, Message from Patient Monitor:");

if (IsEmergency)

{

Console.WriteLine(" Emergency!");

}

else

{

Console.WriteLine(" Please call.");

}

}

// In the constructor for Nurse,

// we receive a PatientMonitor that we need

// to listen for

public Nurse(PatientMonitor PatientMonitorObject)

5 6 C # D e v e l o p e r ' s H e a d s t a r t

{

// Add our delegate method to any existing

PatientMonitorObject.MonitorEvent +=

new MonitorDelegate(this.MonitorEventHandler);

}

}

// Here we create our Doctor and Nurse

// instances and then we wait for things to happen.

class EntryPoint

{

public static void Main()

{

PatientMonitor monitor = new PatientMonitor();

Doctor doctor = new Doctor(monitor);

Nurse nurse = new Nurse(monitor);

// Hold up a bit so we can see

// the events firing.

String UserInput = Console.ReadLine();

}

}

}

Let’s review the key points in the sample that relate to events. First, a delegate
is declared—MonitorDelegate—that specifies the delegate type for the event.
Second, the PatientMonitor class declares a property and accompanying private
field based on this delegate. Third, the PatientMonitor class provides a method—
FireMonitorEvent—which raises the event by calling the delegate. Last, the client
classes Doctor and Nurse implement delegate methods and adds them to the list of
delegates on the PatientMonitor object. The PatientMonitor requires no knowledge of
its clients to invoke methods on them. The client methods receive the events and
take the appropriate action.

Namespaces in C#
We’ve ignored these up to now, but namespaces are crucial to any significant
development done in C#. We use the System namespace frequently in our samples
via the using keyword as follows:

using System;

C h a p t e r 2 : C # L a n g u a g e R e v i e w 5 7

5 8 C # D e v e l o p e r ' s H e a d s t a r t

This allows us to type Console.WriteLine() instead of System.Console.WriteLine().
The System namespace includes all of the base types for the .NET core runtime library.

Namespaces can also be built hierarchically using dot notation. This allows a single
namespace to become quite large by segregating similar classes and interfaces into
sub-namespaces. In the previous event sample, a system timer was used to trigger the
firing of the event. This came from the Timer class, which is in the System.Timers
namespace. By specifying “using System.Timers” we added classes in this namespace
into the global namespace enabling us to directly declare a Timer object without
explicitly using the namespace.

The using keyword can also be used to declare aliases. The alias can represent the
namespace or it can represent a class from the namespace. This is handy if you only
want a few functions from a particular namespace. Aliases can also be used when
some of the types or methods in a namespace collide with existing types or methods.
A simple alias declaration is shown in the following example:

using con = System.Console;

This would allow the following code to be written:

con.WriteLine("Hello, my name is Inigo Montoya");

Declaring Namespaces
You declare your own namespaces using the namespace keyword. Dot notation
is also used to define the hierarchy of your namespace. Use of a standard naming
convention is recommended so third-party users can more easily digest classes you
define. The recommendation is that you prefix any namespace you define with either
a company name or a significant product name. Declaration of a namespace is
shown in the following sample.

namespace SomeCompany.Simple

{

public class SimpleClass

{

}

}

Now our SimpleClass can be segregated from the vast population of other
SimpleClass declarations. When someone else comes up with the great idea of

calling a class Simple, your users have an out. They declare they’re using the
SomeCompany.Simple namespace:

using SomeCompany.Simple;

Exceptions
The try, catch, and finally keywords are used to implement exception handling
in C#. All exceptions in C#, including user-defined exceptions, are derived from
System.Exception. Exceptions are explicitly thrown with the throw statement.
An unhandled exception terminates a thread or program.

The design of exceptions allows your code to start with general exception handling,
and then be finely tuned based on specific cases you want handled differently.

Exceptions can be nested in that a new exception can be raised while in an
exception handler. Rather than getting lost, the original exception is available via
the InnerException property. This enables you to determine if the exception was
thrown from within an exception handler as well as determine what the original
exception was.

Crucial to component development is the clean handling of exceptions, in
particular, handling exceptions among different components from different
providers. The C# exception handling design promotes clean separation without
functional degradation. In other words, your code doesn’t require intimate details
of an object to perform effective handling of errors raised by that object.

The following sample illustrates simple error handling:

// build command: csc trycatch.cs

//

using System;

class SimpleProgram

{

public static void Main(string[] args)

{

try

{

byte a = 10;

byte b = 0;

C h a p t e r 2 : C # L a n g u a g e R e v i e w 5 9

6 0 C # D e v e l o p e r ' s H e a d s t a r t

Console.WriteLine("a/b is {0}", a/b);

Console.WriteLine("if we haven't thrown yet...");

}

catch(Exception e)

{

Console.WriteLine("Exception {0} has been caught", e);

}

Console.WriteLine("Program ended normally.");

}

}

As soon as an exception is raised, control is transferred directly to the exception
handler. No more statements in the try block are executed. Also note, no way exists
to return control back into the try block from the exception. Control can only be
returned to some point prior to the catch block. So, if a retry attempt is desired, the
units of work should be constructed small enough so they can be reexecuted cleanly.

In the following example, we add a finally() block, which is executed regardless
of the exit conditions of the catch block, and we add an explicit catch for divide by
0 in which we “repair” our mistake and reexecute the code.

// build command: csc trycatchfinally.cs

//

using System;

class SimpleProgram

{

public static void Main(string[] args)

{

byte a = 10;

byte b = 0;

ExecuteDivision:

try

{

Console.WriteLine("a/b is {0}", a/b);

Console.WriteLine("if we haven't thrown yet...");

}

catch(System.DivideByZeroException e)

{

C h a p t e r 2 : C # L a n g u a g e R e v i e w 6 1

// Divide by 0, set b to 1 and retry

Console.WriteLine("Exception {0} has been caught", e);

b = 1;

goto ExecuteDivision;

}

catch(Exception e)

{

Console.WriteLine("Exception {0} has been caught", e);

}

finally

{

Console.WriteLine("finally executed");

}

Console.WriteLine("Program ended normally.");

}

}

If you find the handler cannot or should not handle the exception, it can be
rethrown with the throw statement and no parameter.

To control overflow exceptions, the checked and unchecked operators can be applied
to assignment statements. Unchecked statements won’t throw on assignment overflow,
while checked will. Constant expressions that overflow cause a compile error,
regardless of any checked or unchecked setting. By default, runtime overflow
resulting from supported conversions won’t generate exceptions, that is, they execute
in unchecked mode.

Finally, you can define your own exception types. An exception must be derived
either from an existing exception or directly from the System.Exception class.

Attributes
C# also enables attribute-based programming. This lets you change code behavior and
add features just by applying a declarative property to virtually any portion of your
code including classes, any of the classes’ members (fields, methods, member
variables, and so forth), interfaces, assemblies, and even parameters and return values.
This functionality was first fully introduced to the COM world through Component
Services (COM+). In COM+, adding an attribute like transaction_required or
queueable to a component’s IDL automatically inserted transaction support into a

6 2 C # D e v e l o p e r ' s H e a d s t a r t

component or provided MSMQ functionality. .NET extends this feature significantly
and defines a number of standard attributes that can be used to provide functionality,
such as serialization, security, and compilation modifications, as well as those
previously made available through COM+. Furthermore, attributes don’t require
another distinct language (such as COM required IDL) because they can be coded
inline with the original source. Some of the standard attributes used for interoperability
are reviewed in Chapter 6.

NOTE

Many of the attributes included with the .NET framework are interpreted at compile time and
change the MSIL generated.

In addition to the standard attributes provided by the .NET Framework, you can create
your own custom attributes. Custom attributes provide additional metadata that can be
embedded into your class and examined at run time. Custom attributes don’t provide the
same level of functionality that many of the standard attributes do. For example, you
cannot create custom attributes that affect how your code will be compiled or interpreted
by the CLR. Instead, these attributes become meaningful through the use of reflection
code that’s written to interpret and respond to them at runtime. The result is they still
provide a powerful medium for extending functionality. A full discussion of how to
create and use custom attributes appears in the following chapter.

NOTE

Unlike standard attributes, you cannot create custom attributes that affect code compilation
or that may be interpreted automatically by the CLR.

Indexers
C# indexers provide a way to access classes or properties (usually a specialized
collection of objects) using standard array index syntax. Indexers are implemented
through get and set accessors for the [] operator. The following sample shows a
simple implementation using an integer index:

// build command: csc indexers.cs

//

using System;

C h a p t e r 2 : C # L a n g u a g e R e v i e w 6 3

class IntIndexer

{

private static int[] SomeData = {0, 1, 2, 3, 4, 5};

public int this [int Index]

{

get

{

try

{

return SomeData[Index];

}

catch

{

return 0;

}

}

set

{

try

{

SomeData[Index] = value;

}

catch

{

;

}

}

}

public int Length

{

get

{

return SomeData.Length;

}

}

}

public class TestIndexer

{

6 4 C # D e v e l o p e r ' s H e a d s t a r t

public static void Main()

{

// test the integer index

IntIndexer someints = new IntIndexer();

someints[0] = 24;

someints[5] = 17;

someints[86] = 12;

for (int i = 0; i<someints.Length; i++)

{

Console.WriteLine("Element #{0} = {1}", i, someints[i]);

}

Console.WriteLine("Element 86 is {0}", someints[86]);

}

}

In the previous example, we implemented the accessor so the class handles invalid
array access automatically. The get returns 0 on any error and the set simply ignores
the setting on any error. This class isn’t recommended for real-world deployment, but
what you should glean from this is indexers provide a technique for implementing
special array type access—either virtual access to data built on-the-fly or for wrapping
a special resource you might not want to load into memory prior to providing users
access. A gigabyte-large log file, for example, might take a significant amount of time
to load.

Indexers and properties are similar, but some significant differences exist.
Indexers must be instance-based, that is, they cannot be static. The get and set
accessors are invoked as methods with the parameter list specified in the indexer
declaration. The set accessor still has the additional implicit value parameter.

The index parameters can be any type, including strings or objects. If more than one
parameter is specified, then the indexer simulates multidimensional access as well. A
good idea is to implement the IEnumerable interface when implementing an indexer,
so that client can use foreach to iterate the members. Note, the value provided by the
index access isn’t a real variable, so an indexer reference cannot be passed directly as
a ref or out parameter to a method.

Finally, just because you can, doesn’t necessarily mean you should. Indexers
should be reserved for those cases where accessing a class by index makes sense,
and where standard array and collection techniques aren’t appropriate

C h a p t e r 2 : C # L a n g u a g e R e v i e w 6 5

Writing Unsafe Code
In addition to the type safety and automatic garbage collection support C# and .NET
provide, C# also enables you to write code that directly manipulates memory. Any
code marked unsafe allows pointers to be declared and memory to be directly
accessed. Memory allocated during unsafe mode is fixed by default, meaning it
won’t be touched by the garbage collector. This, of course, means you’re responsible
for cleaning up the memory when you no longer need it. In addition, the fixed
keyword can be used to temporarily pin memory managed by the garbage collector.
This gives your unsafe code direct access to memory that’s managed in safe mode.

The following is a short sample that shows the basic use of the unsafe and fixed
keywords. The unsafe keyword is used to mark a method or a property, while the
fixed keyword wraps statements using a pointer to managed memory. The fixed
keyword can only be used within a procedure or method marked as unsafe.

// build command: csc /unsafe unsafe.cs

//

using System;

class EntryPoint

{

unsafe static void AdjustBytes(byte[] ByteArray)

{

fixed (byte* pByte = ByteArray)

{

*(pByte + 3) = 99;

*(pByte + 5) = 99;

*(pByte + 7) = 99;

}

}

public static void Main()

{

byte[] myByteArray = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};

AdjustBytes(myByteArray);

Console.Write("Array contents: ");

foreach(byte aByte in myByteArray)

6 6 C # D e v e l o p e r ' s H e a d s t a r t

{

Console.Write(" {0}", aByte);

}

}

}

Another unsafe feature provided is stackalloc. Stackalloc is used to allocate a
block of memory off the stack. Use of stackalloc is restricted to local variables of
unmanaged type in a procedure already declared unsafe. So, nothing drastic in terms
of memory management is provided here. Stack allocated memory is released along
with all other values on the stack when the scope of execution changes.

Documenting Code Using XML
We have one last point to discuss in this review of the C# language. The C#
compiler includes a /doc parameter that generates an XML file, which documents
your classes based on tags you place in code comments. If you adjust your header
comment style to include these XML style comments, the C# compiler generates
a document for you.

A brief example of the commenting style is included in the following sample.
Comment lines that contain the XML tags must begin with three slashes instead of the
customary two, and the tags must be placed immediately prior to the type or member
being documented. After that, it’s only a matter of including the appropriate XML tag.
The tag varies based on the type being documented. <remarks></remarks> is used
for classes or types, while <summary></summary> is used for type members.
Several others can be included for various items, such as return values <return>,
parameters <param>, describing an example <example>, and two forms for example
code: <c> for one line or short code, and <code> for multiple lines of code. Refer to
the documentation for a full listing of all the tags.

The following text documents the MonitorDelegate used for the PatientMonitor
class from the previous example:

/// <summary>

/// MonitorDelegate is used to inform clients

/// that a PatientMonitor event has occurred.

/// <param name="IsEmergency">

C h a p t e r 2 : C # L a n g u a g e R e v i e w 6 7

/// True indicates that the event is an emergency.

/// </param>

/// </summary>

public delegate void MonitorDelegate(bool IsEmergency);

When the /doc compiler option is used, an XML file is generated that contains
all the comments in the file in a <doc> tag. The <assembly> and <member>
tags are generated automatically by the compiler. A <member> tag is generated
for each class or member that includes a documentation tag. If the class or member
doesn’t include a tag, it won’t be included in the output. Therefore, for a document
to be complete, every member must be tagged. This applies to private, as well as
public members. If a private member is tagged, it also shows up in the generated
document.

The following is the XML generated for the previous document lines:

<?xml version="1.0"?>

<doc>

<assembly>

<name>PatientMonitor_doc</name>

</assembly>

<members> <members>

<member name="T:CShartHeadStart.MonitorDelegate">

<summary>

MonitorDelegate is used to inform clients

that a PatientMonitor event has occurred.

<param name="IsEmergency">

True indicates that the event is an emergency.

</param>

</summary>

</member>

</members>

</doc>

The compiler generates a <member> tag for each documented member. In our
sample, only the MonitorDelegate is documented. The name attribute of the <member>
tag identifies the name and type of the member. In this case, we see a T for Type. Other
possible member types include N, F, P, M, and E for namespace, field, property, method,
and event, respectively. An exclamation point (“!”) is used to indicate a format error. The
text following the ! provides information on the error.

C# Coding Style
Before we move on to the next chapter, we want to make a quick note on coding
style. Coding style standards are a good thing. In fact, everyone should have one! All
kidding aside, this is a fairly critical issue when it comes to the reuse of components
as well as building reusable class hierarchies. Following well-understood coding
standards can make the class libraries you develop more usable by coworkers,
third-party developers of your public classes, as well as anyone given the task of
maintaining the class hierarchy.

The .NET Framework SDK includes the .NET Framework Developer Specifications,
which includes the .NET Framework Design Guidelines. We’ve made a reasonable
attempt to follow the guidelines described in that specification in this book. Here are
some of the main points in the C# style guide:

� Use PascalCasing for just about everything including classes, interfaces,
enumerations, methods, and properties. PascalCasing capitalizes the first
letter of each word in a name, and multiple word names are simply appended
together with no separator character.

� Use camelCasing for local method variables or private class variables.
camelCasing lowercases the first word of a name while subsequent words
are uppercased. Again, multiple word names are simply appended together.

� Interfaces should always start with an I.

� Use nouns for class names and verbs for method names. For example, class
PatientMonitor and public method FireMonitorEvent().

We highly recommend reviewing the design guidelines for yourself before you
get deep into creating your own C# code.

6 8 C # D e v e l o p e r ' s H e a d s t a r t

CHAPTER

3
.NET, the Operating
Environment for C#

69

IN THIS CHAPTER:

Microsoft IL

.NET Building Blocks

Building Modules and Assemblies

Robust Version Control

Built-in Metadata

Cross-language Interoperability

Common Language Specification

Common Type System

Object-oriented

Delegation and Events

Memory Management Through Garbage
Collection

Thread Synchronization

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

The previous chapter provided an overview into the language constructs
of C#. As you saw, C# is a powerful language that includes all the major
features demanded of modern-day computer languages. C# will appeal to

both new and experienced programmers because it not only captures the ease of use
that accompanies Visual Basic, but also makes the power of C++ readily available.
Although C# provides a syntax that’s rich and relatively easy to use, the syntax isn’t
the core of the language. Rather, the majority of C# features are enabled through the
underlying architecture of the language.

As already mentioned, C# is built on the .NET Framework and this is the
framework that enables almost all the features found in C#. At its core, C# is a
language designed to fully expose the .NET Framework. Therefore, to garner a
good understanding of C#, you need to understand the underlying architecture. In
this chapter, we examine the .NET Framework and see how it enables many of the
features discussed in the previous chapter.

Given the breadth of the .NET Framework, investigating it entirely within one
chapter isn’t possible. Instead, the focus is on the following areas:

� Microsoft IL

� .NET Building Blocks

� Version Control

� Built-in Metadata

� Memory Management Through Garbage Collection

Microsoft IL
The key to the .NET Framework is found in MSIL. As introduced in Chapter 1, IL
replaces the binary standard for intermodule communication previously established
by COM. In other words, various modules can interoperate via IL. Furthermore,
through IL, it becomes possible to commingle the various .NET languages.

IL code is a CPU-independent language that usually only gets converted to
machine-specific execution instructions at runtime. IL code isn’t simply the product
of code run through a precompiler, but not yet compiled and optimized into native
machine code. When a managed application begins, the Common Language
Runtime gets invoked, takes the compiled IL code, and runs it through the JIT
compiler to create native machine code. (See the accompanying in-depth box for
details on exactly how the CLR gets loaded.) The IL language is such an integral

7 0 C # D e v e l o p e r ' s H e a d s t a r t

part of the .NET technology, you can view the IL code of an assembly (without
having the original source code) by loading up a .NET file into the managed code
disassembler, ILDasm.exe.

For example, if you compile the Hello.cs file from Chapter 2 into a module called
Hello.exe, you can then load it into ILDasm.exe using the following command:

ILDasm.exe Hello.exe

This launches ILDasm.exe as shown in Figure 3-1, by which you can browse
your IL code.

The first item in the tree shows the assembly manifest, discussed later on in the
chapter. After the manifest come all the classes, data types, and enumerations within
the opened module. If you double-click any of these items, a second dialog box
appears that contains the IL code associated with the selected object. For example,
double-clicking the Main node displays the following set of IL instructions:

.method private hidebysig static void Main() il managed

{

.entrypoint

// Code size 11 (0xb)

.maxstack 8

IL_0000: ldstr "Hello, my name is Inigo Montoya"

IL_0005: call void [mscorlib]System.Console::WriteLine(class

System.String)

IL_000a: ret

} // end of method SimpleProgram::Main

C h a p t e r 3 : . N E T , t h e O p e r a t i n g E n v i r o n m e n t f o r C # 7 1

Figure 3-1 ILDasm.exe screen shot

The first instruction, IL_000, loads the string “Hello, my name is Inigo Montoya”.
The next line calls the System.Console class, which is located in mscorlib. Finally,
the function returns at instruction IL_000a.

Note, you can use ILDasm.exe to examine more than just your own classes. In
fact, the entire .NET library of objects can be opened and inspected. To see that a
value type is ultimately derived from System.Object, therefore, all you need to do
is open the mscorlib.dll assembly and browse down to the System.ValueType class.
The following shows the declaration:

.class public auto ansi serializable ValueType

extends System.Object

{

} // end of class ValueType

As you can see by the fact that the IL code can be shown using ILDasm.exe, IL
code is an integral part of the released module, not simply an intermediate state of
your code during compilation. IL is a complete language that includes instructions
for memory management, exception handling, control flow, and mathematical
operations, along with initializing and calling methods on objects.

7 2 C # D e v e l o p e r ' s H e a d s t a r t

How the CLR Gets Loaded
At this point, you’ve seen how integral IL code is to the entire .NET
architecture and, in Chapter 1, what the purpose is of the CLR. What you
haven’t seen is how the CLR gets loaded when an executable is run. To do this,
rerun ILDasm.exe, except this time, use the /header and /text options shown in
the following:

ILDasm.exe Hello.exe /text /header

This opens a different window with a listing of the entire disassembled
executable. Alternatively, you can dump the output to a file using the
/out=<filename> option in place of the previous /text option. A listing of most
of the ILDasm.exe options can be retrieved with the /? as you would expect.
The resulting output from the previous command is shown in the following
lengthy listing (a few line feeds were inserted for formatting purposes).

// Microsoft (R) .NET Framework IL Disassembler.

// Version 1.0.2204.21

// Copyright (C) Microsoft Corp. 1998-2000

C h a p t e r 3 : . N E T , t h e O p e r a t i n g E n v i r o n m e n t f o r C # 7 3

// PE Header:

// Subsystem: 00000003

// Native entry point address: 0000234e

// Image base: 00400000

// Section alignment: 00002000

// File alignment: 00000200

// Stack reserve size: 00100000

// Stack commit size: 00001000

// Directories: 00000010

// 0 [0] address [size] of Export Directory:

// 2300 [4b] address [size] of Import Directory:

// 4000 [2d8] address [size] of Resource Directory:

// 0 [0] address [size] of Exception Directory:

// 0 [0] address [size] of Security Directory:

// 6000 [c] address [size] of Base Relocation Table:

// 0 [0] address [size] of Debug Directory:

// 0 [0] address [size] of Architecture Specific:

// 0 [0] address [size] of Global Pointer:

// 0 [0] address [size] of TLS Directory:

// 0 [0] address [size] of Load Config Directory:

// 0 [0] address [size] of Bound Import Directory:

// 2000 [8] address [size] of Import Address Table:

// 0 [0] address [size] of Delay Load IAT:

// 2008 [48] address [size] of COM+ Header:

// Import Address Table

// mscoree.dll

// 00002000 Import Address Table

// 0000233e Import Name Table

// 0 time date stamp

// 0 Index of first forwarder reference

//

// 0 _CorExeMain

// Delay Load Import Address Table

// No data.

// CLR Header:

// 72 Header Size

// 2 Major Runtime Version

// 0 Minor Runtime Version

// 1 Flags

7 4 C # D e v e l o p e r ' s H e a d s t a r t

// 6000001 Entrypoint Token

// 2064 [29c] address [size] of Metadata Directory:

// 2064 [0] address [size] of Resources Directory:

// 0 [0] address [size] of Strong Name Signature:

// 0 [0] address [size] of CodeManager Table:

// 0 [0] address [size] of VTableFixups Directory:

// 0 [0] address [size] of Export Address Table:

// 0 [0] address [size] of Precompile Header:

// Code Manager Table:

// default

// VTableFixup Directory:

// No data.

// Export Address Table Jumps:

// No data.

.subsystem 0x00000003

.corflags 0x00000001

.assembly extern mscorlib

{

.originator = (03 68 91 16 D3 A4 AE 33) // .h.....3

.hash = (52 44 F8 C9 55 1F 54 3F 97 D7 AB AD E2 DF 1D E0

F2 9D 4F BC) //

RD..U.T?..........O.

.ver 1:0:2204:21

}

.assembly Hello as "Hello"

{

// --- The following custom attribute is added automatically,

// --- do not uncomment

// .custom instance void

// [mscorlib]System.Diagnostics.DebuggableAttribute::.ctor(

// bool, bool) = (01 00 00 01 00 00)

.hash algorithm 0x00008004

.ver 0:0:0:0

}

.module Hello.exe

// MVID: {E3676EA1-C54C-49A3-967E-F84776D6A436}

.class private auto ansi SimpleProgram

extends [mscorlib]System.Object

{

.method private hidebysig static void Main() il managed

C h a p t e r 3 : . N E T , t h e O p e r a t i n g E n v i r o n m e n t f o r C # 7 5

{

.entrypoint

// Code size 11 (0xb)

.maxstack 8

IL_0000: ldstr "Hello, my name is Inigo Montoya"

IL_0005: call void [mscorlib]System.Console::WriteLine(

class System.String)

IL_000a: ret

} // end of method SimpleProgram::Main

.method public hidebysig specialname rtspecialname

instance void .ctor() il managed

{

// Code size 7 (0x7)

.maxstack 8

IL_0000: ldarg.0

IL_0001: call instance void

[mscorlib]System.Object::.ctor()

IL_0006: ret

} // end of method SimpleProgram::.ctor

} // end of class SimpleProgram

//*********** DISASSEMBLY COMPLETE ***********************

The interesting part about this listing is the top portion that contains header
information, specifically the first address listing that appears immediately below
the // PE Header line. This listing points to how the CLR gets loaded. First, is
the image base address, which is set to 00400000. This indicates the location of
the executing code. Next, comes the native entry point address at 0000234e.
This indicates that the first instruction occurs at an offset of 234e from the
image base. In other words, the first instruction is at 0040234e.

If you load the executable into the debugger and look at the assembly code,
you see the instruction at 0040234e is a jmp instruction to 00402000. Close
examination of the Import Address Table section of the previous disassembly
reveals that address 00402000 (00400000 plus the 00002000 offset) is the
location of mscoree.dll and _CorExeMain can be found at this location.
In this manner, the CLR is called into the execution environment.

.NET Building Blocks
You know now the fundamental element of managed code is IL. In this section, you
see what IL code is used to create. Two important items in the area of .NET software
need to be defined in the context of building software made up of components, as
discussed in Chapter 1. The first is a module and the second is the assembly.

Modules
A module is a formalization of a term that’s already been used repeatedly throughout
this book. In the .NET Framework, a module is a portable executable file, either a
DLL or an EXE, which contains the definition of one or more data types (usually
classes) along with their code that conforms to the Common Object File Format used
for executables. IL is the fundamental element that makes up the functionality of a
module.

NOTE

In the .NET Framework, a module is a portable executable file, either a DLL or an EXE, which
contains the definition of one or more data types (usually classes) along with their code.

Assemblies
Modules cannot function independently, however. Modules are combined together
into units called assemblies, which contain a combination of modules, resource files,
and metadata to make a unit of the required files. The assembly refers to a “logical”
DLL or application that may be composed of more than one physical file/module. In
other words, creating an assembly does not combine separate physical modules into
one file but, instead, it defines a logical unit that needs to be deployed as a package
and managed as a unit by the .NET system even though it’s made up of separate
modules.

Furthermore, modules aren’t the smallest versioning unit available. Once created,
the entire assembly is marked with a version number and no versioning unit is
smaller than an assembly. Therefore, if one module within an assembly is targeted
to work with a second module inside the assembly, then that’s the module it works
with. Developers won’t replace the targeted module with a newer version and place
it within the same assembly any longer. Instead, they’ll create an entirely new
assembly.

7 6 C # D e v e l o p e r ' s H e a d s t a r t

C h a p t e r 3 : . N E T , t h e O p e r a t i n g E n v i r o n m e n t f o r C # 7 7

NOTE

Assemblies define the discrete unit of deployment, reuse, and versioning. No versioning unit is
smaller than an assembly.

Essentially, three types of assemblies exist. The first two types are executables:
either console-based or Windows-based. Each of these can start a Win32 process.
The last type is a library. A library provides a set of services that can be accessed by
other assemblies, but a library cannot execute on its own because it doesn’t form a
valid Win32 executable.

Assemblies can be combined together into applications, but the basic building
block for a released application is still the assembly, not the individual modules used
to create the assembly. As such, assemblies define the discrete unit of deployment,
reuse, and versioning.

Application Domains
.NET provides an additional level of process breakdown that is smaller than a
process, but larger than a thread. This is known as an application domain. An
application domain is used to define a level of isolation for a program without
having to consume the resources required for a process. In the past, applications
were typically isolated from each other by each being placed into a separate
process. This prevents them from corrupting each other’s memory and generally
limits one application from adversely affecting another. In addition, application
isolation provides for varying security restrictions and independent application
debugging.

The introduction in .NET of application domains provides similar isolation
without the overhead that multiple processes require. Because IL code can be
analyzed at runtime, you can determine whether code is type safe, as well as provide
a boundary for faults, so that errors will only affect a particular application domain
and not an entire process. The result is this: what previously required multiple
Win32 processes can now be combined into one process, but divided into multiple
application domains.

For all practical purposes, an application domain can be thought of as an
individual process in the traditional sense. Each application domain can have its
own configuration file and, at runtime, each instance of a particular application

7 8 C # D e v e l o p e r ' s H e a d s t a r t

domain can have its own data segment. For example, class static variables have
their own instance if the same assembly were loaded into two different applications
domains within the same Win32 process. Furthermore, interprocess communication
invokes a proxy, so no direct calls occur from one domain into another. However,
because the calls from one application domain don’t have to cross Win32 process
boundaries, the calls can be more efficient. Finally, each application domain can
run under its own set of privileges or permissions.

Building Modules and Assemblies
As you learned in Chapter 2, you can build an assembly using the C# compiler,
csc.exe. In each of these examples, only one module was in each assembly. In this
section, you learn more about the C# compiler options used to create modules and
reference them within assemblies.

By default, the C# compiler creates an assembly, rather than a module. If you
want to create a module, you need to use the /t:module option where /t is short for
/target. For example, if you had two files—employee.cs and patient.cs—to compile
into a module, you would use the following command line:

csc.exe /t:module employee.cs patient.cs

or

csc.exe /t:module /out:hospital.mod employee.cs patient.cs

The addition of the /out option enables you to specify what the target file
will be. If, however, no target filename is specified, then the name is generated
from the name of the first file in the list of files being compiled. Therefore, in
the first example, the compiled file will be employee.dll, whereas in the second
example, hospital.mod is explicitly specified. By default, a DLL file extension
is used for modules and libraries. (Remember, the difference between a module
and that a library is a library is a .NET assembly. In other words, a library
contains the additional version and other header information required by
an assembly.)

Once you create several modules, you’ll want to combine them into an assembly.
You can do this using the C# Compiler if you still have any uncompiled files. To
reference any modules you already created, use the /addmodule option, as follows:

C h a p t e r 3 : . N E T , t h e O p e r a t i n g E n v i r o n m e n t f o r C # 7 9

csc.exe /addmodule:employee.dll patient.cs

On the other hand, if you have no more remaining code and, instead, you want to
combine all the existing modules into an assembly, use the Al.exe tool. For example,
to combine two modules—employee.dll and patient.dll—into a library called
Hospital.dll, you use the following:

Al.exe /out:Hospital.dll employee.dll patient.dll

Note, the resulting file, Hospital.dll, still needs to be distributed with the
employee.dll and patient.dll DLLs because, as previously stated, creating an
assembly doesn’t combine the modules into one file. In the previous command, a
library was created. When building an executable, you need to specify one additional
option, which is the name of the main function. If, for example, we included the
main function inside a class called EntryPoint within a namespace Hospital, then
we could build the Hospital.exe file as follows:

Al.exe /t:exe /out:Hospital.exe employee.dll patient.dll

/main:Hospital.EntryPoint.Main

Note the addition of the target option /t:exe. Without this, a library would be
created by default. If you don’t include the /main when you specify /t:exe, the
assembly will fail to build.

Robust Version Control
Because assemblies are the smallest versioning unit of an application, we can
assume additional information about the assembly version is stored in the assembly.
This data forms part of what is known as the assembly manifest, which contains
metadata embedded into an assembly. Most of the information relates to file and
version information. To understand this, let’s examine the manifest of the
HospitalSystem.exe assembly built in the previous section, “Building Components
and Assemblies.” The following shows a listing of this manifest.

.module extern employee.dll

.file employee.dll

8 0 C # D e v e l o p e r ' s H e a d s t a r t

.hash = (10 F2 7B EB 95 7F 76 07 22 6D 6F FD C7 47 BB D5

8A 1D BD 8C) // ..{...v."mo..G..

.file patient.dll

.hash = (D8 E5 0B 15 0C 73 FE F4 D3 EE A2 0F DF 7E CF BF

DA B0 74 15) //s.......~....t.

.assembly extern mscorlib

{

.originator = (03 68 91 16 D3 A4 AE 33) // .h.....3

.hash = (52 44 F8 C9 55 1F 54 3F 97 D7 AB AD E2 DF 1D E0

F2 9D 4F BC) // RD..U.T?..........O.

.ver 1:0:2204:21

}

.assembly HospitalSystem as "HospitalSystem"

{

// --- The following custom attribute is added

// automatically, do not uncomment -------

// .custom instance void

[mscorlib]System.Diagnostics.DebuggableAttribute::.ctor(bool,

bool) = (01 00 00 01 00 00)

.hash algorithm 0x00008004

.ver 0:0:0:0

}

.module HospitalSystem.exe

// MVID: {7FFEF80F-DF2B-4E55-99FC-3F3F6CFE8134}

In this listing, you can see both of the key purposes to the manifest data. The first
purpose is to point to a list of all the modules included in the assembly. Notice that
to point to a file requires more than simply the filename. In fact, even a combination
of the filename and the version number isn’t sufficient. (In the previous listing, only
mscore.lib has a version number because it’s the only assembly; modules don’t have
version numbers.) In addition, the manifest includes a hash that uniquely identifies
the linked module or assembly. If you recompile HospitalSystem.exe, you see the
hash for Alarm.mod doesn’t change. If you recompile the Alarm.mod, the
referenced module, and then recompile HospitalSystem.exe, however, the hash
value changes. The point is this: the manifest uniquely identifies the module used
and changing the module changes the identification. If the referenced module was
changed or recompiled, it would be possible to tell. Having a listing of external files
isn’t unique to assemblies; modules also contain these references to indicate what
their dependencies are.

The additional metadata an assembly contains beyond a module is the portion
within the assembly section, as shown in the following relisted code:

C h a p t e r 3 : . N E T , t h e O p e r a t i n g E n v i r o n m e n t f o r C # 8 1

.assembly extern mscorlib

{

.originator = (03 68 91 16 D3 A4 AE 33) // .h.....3

.hash = (52 44 F8 C9 55 1F 54 3F 97 D7 AB AD E2 DF 1D E0

F2 9D 4F BC) // RD..U.T?..........O.

.ver 1:0:2204:21

}

By default, the version number for an assembly, when it isn’t explicitly
specified, is 0:0:0:0. The number is broken down into four parts as follows:
<Major>:<Minor>:<Build>:<Revision>. Although missing by default, the
version can be set explicitly using an attribute, as the following shows.

[assembly: System.Runtime.CompilerServices.AssemblyVersion("1.0.*")]

Because the AssemblyVersion is an attribute of the assembly, it needs to be
placed at a global location within a file and not inside a namespace. If you’re
using Visual Studio.NET to generate your project, you’ll notice it automatically
creates an assembly.cs file that contains several different assembly properties
for you. The advantage of this is all your assembly information will be kept in
one file.

Notice in the example where only two digits are specified, the third is simply a
star, and the fourth is missing altogether. The star in this location indicates that the
build number and revision should be automatically generated. The generated build
number will be the number of days since January 1, 2000, and the generated
revision will be the number of seconds since midnight. You can also include the
build number explicitly and have the revision generated (based on the number of
seconds again).

For the CLR to load a referenced module or assembly, it simply uses the filename
contained in the assembly and searches for the referenced file in the same directory
as the assembly or any child directory. Given this scenario, however, version
information becomes irrelevant.

NOTE

For the CLR to load a referenced module or assembly, it uses the filename contained in the
assembly and, by default, searches for the referenced file in the same directory or child directory
as the application.

8 2 C # D e v e l o p e r ' s H e a d s t a r t

Forcing a referenced assembly to be included in the same directory is rather
restrictive. It works well if you developed all the modules within the assembly,
but it can become a problem otherwise. If 20 different applications are on a
computer and they all reference the same file, it seems rather pointless for them
all to have their own copies of all files included in an assembly. This helps
considerably in solving the various versioning problems, however, because it’s
unlikely another vendor would override the files you distribute in your own
directory. Therefore, the files you distribute are the ones loaded by your
application, even if a second application on the same system uses different
versions of the same files.

NOTE

The advantage of placing an assembly in the same directory as an application is that simply
copying the files can deploy the application. No registration is required.

Even with the relatively cheap cost of disk space, however, there seems little
reason to waste resources unnecessarily by forcing each application to install its
own copy of a common file. And what happens when you want to apply a patch?
Fortunately, two other ways exist of deploying your software without forcing it
all to be in the same directory. The first is to specify the location of an assembly
using a configuration file. A configuration file is an XML file included in the same
directory as the application. The name of the file should be the same as the name
of the executable, except it should have a CFG extension. An example of such a
file follows.

<?xml version ="1.0"?>

<Configuration>

<Assemblies>

<CodeBaseHint Name=" HospitalInterfaces"

Originator="BA 91 94 D4 9A A5 17 2F"

Version="1:2:409:34237"

CodeBase="c:\CSharpHeadStart\HospitalInterfaces.dll"/>

</Assemblies>

</Configuration>

C h a p t e r 3 : . N E T , t h e O p e r a t i n g E n v i r o n m e n t f o r C # 8 3

In addition to providing the capability of having multiple versions of the same file
on a computer, both the solutions previously mentioned (placing the assembly in the
same directory or referencing it with a configuration file) have another strong
advantage: they both can be deployed by simply copying the files on to the
computer. There’s no need to run some special utility to register them, as was
required for COM modules.

Although configuration files may help in reducing the number of duplicate files
installed on a system, to expect users to create configuration files manually that
point to the location they happened to select for installing a component is
unacceptable. The configuration file solution exists more for the benefit of system
administrators who are attempting to repair an application, enabling them to specify
explicitly where a component is located. A different solution is still needed for
deploying a shared assembly.

The third solution is specifically designed for components to be shared by
multiple applications. If you’re deploying such a file, you want to deploy it using the
gacutil.exe utility. This utility “registers” the file with the system, so it can be
located by the CLR. The GAC in gacutil.exe stands for Global Assembly Cache and
is the location where shared assemblies are placed and registered. You can get a
listing of all the assemblies on your system by executing gacutil.exe –l on the
command line. In addition, it can be viewed at your <winnt>\assembly\GAC directory.

One additional step must be performed before your application can be registered
with gacutil.exe: you need to sign your application. The easiest way to do this is to
create a signature key file using the following command:

sn –k CSharpHeadStart.snk

You then need to reference this file from within one of your source files,
assembly.cs by convention. This is done with the following code:

[assembly: AssemblyDelaySign(false)]

[assembly: AssemblyKeyFile("CSharpHeadStart.snk")]

After compiling the assembly, you can then register it using gacutil.exe, as
previously described.

One might assume only one version of a particular assembly can be registered
with the global assembly cache at a time. Such a scenario, however, would defeat the
capability of side-by-side installation. Side-by-side installation allows there to be

more than one version of a component on the same machine. Instead, the global
assembly cache enables the deployment of many different versions of the same file.
You can verify this from a DOS prompt by listing all the files located within the
assembly cache (dir c:\winnt\assembly*.* /s).

Because one assembly’s manifest includes the version information of any
additional assemblies referenced, the CLR loads the version specified in the
manifest. In fact, if the major or minor versions of the referenced assembly are
different than any stored in the GAC (or located in the application directory), the
file won’t load. Therefore, to apply a patch, be sure the version number matches
the previous version and only the build and/or revision numbers change. Note,
however, this isn’t true for local assemblies in the same directory. Assemblies in
the local directory or referenced in the configuration file are loaded regardless
of the version number.

In summary, .NET component versioning is designed to solve many of the
problems that previously existed on the Windows platform. Components shared by
multiple applications are packaged into assemblies and deployed into the global
assembly cache. Any application that references an assembly in the global cache
looks for the specific version number it was built with, matching up both the major
and minor parts of the version number. This enables the capability to deploy two or
more versions of the same component on one machine and to be sure they reference
the correct version.

If, however, multiple applications aren’t sharing the component, then copying the
file into the directory of the application is all that’s required. For these scenarios, it’s
no longer necessary to register your component with the system. Installing
applications by simply copying them on to the hard drive is often referred to as
xcopy deploy, after the command line utility called xcopy.exe.

Built-in Metadata
Earlier in the chapter, we used ILDasm.exe to examine the assembly manifest to see
what modules and external assemblies it referenced. Another key concept that can be
viewed with ILDasm.exe is the inclusion of metadata into every data definition. As
stated in Chapter 1, every data type within .NET software includes metadata that
describes it. Furthermore, as you soon see when we look at reflection, all this
metadata is accessible programmatically enabling developers to read and call
into objects dynamically at runtime. Essentially, metadata is built into the IL.

8 4 C # D e v e l o p e r ' s H e a d s t a r t

NOTE

Through metadata, .NET software becomes self-describing.

With metadata, the CLR knows the layout of each object in memory. (The details
of memory management appear later in this chapter.) This is important for the
garbage collector when it comes to compacting the data. Without this knowledge,
the garbage collector wouldn’t know where one object instance ends and the next
begins. Memory layout is also key when it comes to overflow checking. Because
the CLR knows the size of all objects, it can prevent security breaches that involve
overflowing a data area. Armed with metadata, the CLR can prevent code from
accessing memory it shouldn’t. Also, because the metadata is inherently part of IL
code and IL code exists at runtime, little chance exists of any data-type mismatch
occurring while code is executing, thereby increasing application reliability.

NOTE

Metadata in .NET enables the capability to check for overflow, thus sealing a potential
security hole.

Metadata also aids in programming component software. Through the metadata,
tools such as IntelliSense can operate even if the class is defined inside an entirely
different module or assembly from the one you’re writing. When you use editors that
don’t support IntelliSense, developers can examine metadata while programming
against a particular class to view the exact definition of a class, even if no help file is
supplied. In fact, a similar technique can be used to assist in generating documentation
of your own classes.

If you continue on from programming to compiling and running your code,
you’ll realize metadata is used by the compilers, CLR, and debuggers. For example,
metadata is used by the CLR to locate and load the modules that are part of an
assembly, and then ensure that code executes within the bounds of the assigned
security privileges.

Metadata defines a standard via which all programming languages can share
a common format for interoperability. Rather than each language having its own
custom mechanism for exposing type information, they can all use the common
format of .NET metadata. Each compiler can use a standard format for exporting
data type information. The same mechanism is used in the reverse. Rather than each
language having a custom way of importing the metadata, each can use a common
mechanism. For example, prior to .NET, C++ COM clients required the use of
header files. In the most recent version, these could be generated using the #import

C h a p t e r 3 : . N E T , t h e O p e r a t i n g E n v i r o n m e n t f o r C # 8 5

precompile construct of Visual Studio 6. Visual Basic 6 didn’t support the same
mechanism, however, and header files were completely useless. Instead, Visual
Basic required an oleautomation-compatible type library, which it then referenced.
In the .NET world, the mechanism is significantly simpler: each language has the
same mechanism in which the differences are syntactical, rather than methodological.

Metadata is absolutely essential to the JIT compiler. The JIT compiler can
translate MSIL code into native machine code via metadata. Furthermore, through
metadata, the CLR knows how to pass data from one context to another (context is
the surrounding runtime environment, the walls or boundary, in which an object
runs. The context is defined by such items as the security parameters, thread identity,
and process characteristics within which an object is instantiated.) Metadata is a key
ingredient to the CLR when it comes to data marshalling or passing data between
contexts. In the COM world, writing custom marshalling code to handle anything
but the most basic data types (known as oleautomation data types) was often
necessary. Because of the intrinsic metadata that accompanies all managed data
types, this is no longer necessary. Clearly, metadata is a core part of the .NET
architecture.

Attribute-based Programming
As discussed in the previous chapter, the .NET framework provides several standard
attributes and, in addition, you can create your own custom attributes. Custom
attributes provide additional metadata that can be embedded into your class and
examined at runtime via reflection code, which is written to interpret and respond
to the attributes at runtime.

NOTE

Custom attributes don’t affect the IL code a compiler generates.

NOTE

Custom attributes only become meaningful when code executing at runtime examines the
metadata and looks for a particular attribute.

Consider an example. Imagine you wrote a set of classes that all fit within an
application model. Furthermore, imagine for each type of class, you have a property
that uniquely identifies the object. This property would serve as a primary key for all
the objects of that type in the system. For example, if you have an object of type
Person, you may assign the Social Security number as the primary key attribute

8 6 C # D e v e l o p e r ' s H e a d s t a r t

because it uniquely identifies all the person objects. Since each object may have a
different property that serves as the primary key, you decide to identify the field
using a custom attribute.

To begin, you need to define the attribute. This is done by creating a new class
that’s derived from System.Attribute, as shown in the following example. (Note, all
code for this section on attributes can be found in the file named PKAttribute.cs.)

namespace CSharpHeadStart

{

[AttributeUsage(AttributeTargets.Class, AllowMultiple = false)]

public class PrimaryKeyAttribute : System.Attribute

{

public PrimaryKeyAttribute(string Name)

{

this.Name = Name;

}

public string Name

{

get { return name; }

set { name = value; }

}

private string name;

}

}

In this example, we defined an attribute called PrimaryKeyAttribute, which can
be used to decorate any class only once ([AttributeUsage(AttributeTargets.Class,
AllowMultiple = false)]).

NOTE

All the code within this section uses properties rather than fields because this provides an easier
way to extend the functionality without changing the code in the PrimaryKey attribute.

[PrimaryKey("SSN")]

public class Person : System.Object

{

public Person(string SSN, string FirstName, string LastName)

{

this.SSN = SSN;

this.FirstName = FirstName;

C h a p t e r 3 : . N E T , t h e O p e r a t i n g E n v i r o n m e n t f o r C # 8 7

this.LastName = LastName;

}

public string FirstName

{

get { return firstname; }

set { firstname = value; }

}

public string LastName

{

get { return lastname; }

set { lastname = value; }

}

public string SSN

{

get { return ssn; }

set { ssn = value; }

}

private string firstname;

private string lastname;

private string ssn;

}

Notice only one public constructor exists for this class and it takes a string. The
result is if we use the attribute, as shown in the previous code, you must specify a
string. For example, if the person attribute was decorated with [PrimaryKey]
instead of [PrimaryKey(“SSN”)] , the code wouldn’t compile. Notice the name of
the custom defined attribute is PrimaryKeyAttribute, but when it’s actually used in
the code, only PrimaryKey is used; the Attribute suffix is removed. The removal
of the Attribute suffix isn’t required, instead this is a characteristic of the C#
compiler, and not an official part of the .NET specification. If you glance at the
generated IL code, you’ll notice the full name, including the suffix, is used. One
last thing to note is the suffix Attribute is used by convention and isn’t actually a
requirement (although the convention should be followed).

Reflection
Now that we’ve seen how to create a custom attribute, it’s time to look at accessing
the attribute. The mechanism for doing this is known as reflection and it’s much more
generic than simply looking for a custom attribute. With reflection, you can read all

8 8 C # D e v e l o p e r ' s H e a d s t a r t

the metadata of an assembly and its classes, and, from this, you could do things like
generate code on the fly or automatically create documentation of your classes.

Although you can place the code for retrieving the custom attribute into a new
class, for this example, the best place to add the code is into static functions on the
PrimaryKeyAttribute. To begin, the following code shows a GetPrimaryKeyName()
function that should be added to the PrimaryKeyAttribute class.

public static string GetPrimaryKeyName(Type PKObjecType)

{

// Now lets do some reflection

Object[] pkattributes =

PKObjecType.GetCustomAttributes(typeof(PrimaryKeyAttribute));

if(pkattributes.Length > 0)

{

PrimaryKeyAttribute PKAttribute =

(PrimaryKeyAttribute)pkattributes[0];

return PKAttribute.Name;

}

else

return null;

}

The function takes an object type (a class) as a parameter and retrieves the custom
attributes of this type. System.Type is at the core of most of the reflection services
and because System.Object supports this property, all objects provide the capability
to retrieve it. Once the PrimaryKeyAttribute object has been retrieved, you can
call the Name property to retrieve the name of the primary field property.

The following code demonstrates how to use the GetPrimaryKeyName()
function. It begins by opening an assembly and searching through each module’s
classes. Given each class, it checks for the PrimaryKeyAttribute and, if this exists,
it prints the name of the property specified.

namespace CSharpHeadStart

{

class EntryPoint

{

static public void Main()

{

string PKName;

Assembly assembly = Assembly.Load("Person.dll");

foreach (Module module in assembly.GetModules())

foreach (Type type in module.GetTypes())

C h a p t e r 3 : . N E T , t h e O p e r a t i n g E n v i r o n m e n t f o r C # 8 9

{

PKName = PrimaryKeyAttribute.GetPrimaryKeyName(type);

if(PKName != null)

Console.WriteLine(

"The primary key of class '{0}' is '{1}'",

type.ToString(), PKName);

else

Console.WriteLine("Class '{0}' has no primary key.",

type.ToString());

};

}

}

}

As already stated, reflection provides more than simply a documentation
mechanism. Reflection can also be used to call functions dynamically. Look at the
following code, for example, which is a listing of the entire PrimaryKeyAttribute
class with a new static GetPKValue() function included.

namespace CSharpHeadStart

{

[AttributeUsage(AttributeTargets.Class, AllowMultiple = false)]

public class PrimaryKeyAttribute : System.Attribute

{

public PrimaryKeyAttribute(string Name)

{

this.Name = Name;

}

public string Name

{

get { return name; }

set { name = value; }

}

private string name;

// This method returns the name of the primary key

// field given an object. Null is returned if the

// object has no properties with the PrimaryKey

// attribute

public static string GetPrimaryKeyName(Type PKObjecType)

9 0 C # D e v e l o p e r ' s H e a d s t a r t

{

// Now lets do some reflection

Object[] pkattributes =

PKObjecType.GetCustomAttributes(typeof(PrimaryKeyAttribute));

if(pkattributes.Length > 0)

{

PrimaryKeyAttribute PKAttribute =

(PrimaryKeyAttribute)pkattributes[0];

return PKAttribute.Name;

}

else

return null;

}

// This function returns the value of the property

// identified as the primary key or null if no

// such field exists.

public static object GetPKValue(Object PKObject)

{

System.Reflection.PropertyInfo propertyInfo = null;

string primaryKeyName =

PrimaryKeyAttribute.GetPrimaryKeyName(PKObject.GetType());

if(primaryKeyName != null)

{

propertyInfo = PKObject.GetType().GetProperty(

primaryKeyName);

}

if(propertyInfo!= null)

{

return propertyInfo.GetValue(PKObject, null).ToString();

}

else

{

// The attribute must have been on a field or method

// which are not covered here or else no PK attribute

// was specified.

return null;

}

}

}

}

C h a p t e r 3 : . N E T , t h e O p e r a t i n g E n v i r o n m e n t f o r C # 9 1

9 2 C # D e v e l o p e r ' s H e a d s t a r t

The added GetPKValue() function is designed to take an object as a parameter
and return the value stored in this object’s primary key property. Given this object,
the function first calls GetPrimaryKeyName() to retrieve the name of the property
decorated with the PrimaryKeyAttribute attribute. Next, it uses the type of the object
parameter—PKObject—and requests a System.Reflection.PropertyInfo object.
The PropertyInfo object is then used to retrieve the value stored in the class
property identified by the PrimaryKeyAttribute.

In the previous code, PropertyInfo was used because the attribute was intended
to identify the primary key property. This isn’t enforced at compile time, however,
and developers could specify a method or a field when using the PrimaryKeyAttribute.
To account for this scenario, you would have to use the FieldInfo or MethodInfo
class. (This isn’t shown in the previous listing because it makes the listing too long,
but it’s reasonably trivial to add it.) All of these derive from MemberInfo and offer
similar functionality.

The following code demonstrates how to call the GetPKValue() function.

namespace CSharpHeadStart

{

class EntryPoint

{

static public void Main()

{

// Instantiate a person

Person person = new Person(

"781-00-7865", "Abraham", "Lincoln");

string PKName = PrimaryKeyAttribute.GetPrimaryKeyName(

person.GetType());

// Now lets retrieve the name of the primary key property.

Console.WriteLine("The primary key of class {0} is {1}",

person.GetType(), PKName);

// Now let's dynamically execute some code and retrieve

// the value of the property.

Console.WriteLine("The value of the '{0}' property " +

"on class '{1}' is '{2}'.",

PKName, person.GetType().ToString(),

PrimaryKeyAttribute.GetPKValue(person).ToString());

}

}

}

In this code, we begin by instantiating a Person object. Next, we retrieve
the primary key name from the type of the instantiated object—in this case,
Person—and write this out to the console. Finally, we call the GetPKValue()
function to retrieve the function value. In this case, the result would be
“781-00-7865.”

Cross-language Interoperability
One of the key features MSIL enables is cross-language interoperability, which
allows developers to write code in multiple .NET languages and to have it all
interact as though it were written in the same language (which it is because each
language compiles into IL).

Take, for example, the following Visual Basic.NET code.

Namespace CSharpHeadStart

Class VBBase

Public Overridable Function Identify() As String

Return "VBBase"

End Function

End Class

End Namespace

Given this class, you can create a C# class that derives from the VBBase class,
as the following demonstrates.

namespace CSharpHeadStart

{

class CSharpDerived : VBBase

{

public new string Identify()

{

return "CSharpDerived";

}

}

class EntryPoint

{

public static void Main()

{

C h a p t e r 3 : . N E T , t h e O p e r a t i n g E n v i r o n m e n t f o r C # 9 3

CSharpDerived cs = new CSharpDerived();

VBBase vb = new VBBase();

System.Console.WriteLine(cs.Identify());

System.Console.WriteLine(vb.Identify());

vb = cs;

// CSharpDerived output since Identify()

// is virtual in VBBase.

System.Console.WriteLine(vb.Identify()); }

}

}

Simply including the Visual Basic module (using the /addmodule option)
when compiling your C# code is the only additional step to achieving language
interoperability. Note, language interoperability doesn’t enable you to include two
different languages within the same file or even to compile two files of different
languages into the same module. Each language needs to be compiled into its own
module or assembly before interoperability can work.

Exception handling can even be used across languages. In other words, you can
throw an exception from one language and catch it using code written in a different
language. This type of functionality wasn’t supported at all before and COM
developers were required to take great care in ensuring that C++ exceptions were
never thrown across COM boundaries. With .NET, however, cross boundary
exception handling becomes a concern of the past.

Another significant feature of language interoperability is cross-language
debugging. In fact, debugging not only crosses language boundaries, it can also cross
process and machine boundaries, displaying code regardless of what language it’s
written in.

Common Language Specification
To ensure components have language interoperability, Microsoft has defined a
standard called the Common Language Specification (CLS). Because of syntactical
characteristics in various languages, CLS places some additional restrictions on code
so that it will be fully interoperable with other languages. The most relevant of these
restrictions for C# programmers concerns case sensitivity. Some languages, such as
Visual Basic, aren’t case-sensitive. The result is this: if you define a class in C# with
two functions that only differ in case, then this function won’t be interoperable with
all .NET languages. This is because case-insensitive languages cannot distinguish
between the two methods. This restriction is placed on all public and protected

9 4 C # D e v e l o p e r ' s H e a d s t a r t

members of a class. Another restriction is that overloaded operators should have
alternate-named functions that perform the same operation because not all languages
allow operator overloading. Other criteria must be met for a class to be
CLS-compliant. The details can be found in the CLS documentation. Despite the
CLS restrictions, language interoperability is well ahead of previous solutions to this
problem. Previously, for languages to interoperate, each language’s compiler had to
generate assembler code that conformed to a binary standard, and the final
restrictions were much greater.

To write CLS-compliant C# code (something that’s recommended if you plan
on distributing your components for others to use), you need to decorate it with
the CLSCompliant attribute. The following is sample code demonstrating how
to do this:

[assembly:System.CLSCompliant(true)]

namespace CSharpHeadStart

{

class ThisClassIsCLSCompliant

{

...

}

}

You can also check if an assembly is CLS-compliant using the PEVerify.exe tool.

Common Type System
Another aspect IL maintains control over is in the types available in the .NET
Framework. As you saw in the last chapter, a fixed set of types is available with
.NET: classes, interfaces, and value types. The type system plays an important role
in cross-language integration because it defines the rules language compilers need to
abide by for their code to interoperate with other languages. Because, ultimately, all
language compilers will generate IL code, each language is forced to comply with
the Common Type System if the language is a managed language. The Common
Type System (CTS) describes the types supported by the .NET Framework and how
these types interrelate to each other.

C h a p t e r 3 : . N E T , t h e O p e r a t i n g E n v i r o n m e n t f o r C # 9 5

Object-oriented
Another key characteristic of IL is that it is object-oriented. In the previous chapter,
you read about the object-oriented features offered by C#. In this section, you see
how each of these features is really a C# way of exposing the same features found in
IL. Performing this analysis serves two purposes: first, it provides a firsthand look at
the intimate role the .NET Framework plays in the language of C#; and, second, it
provides a cursory look at the IL language. Becoming familiar with IL code is
valuable simply because IL is such an integral part of .NET. Let’s look at some
of the code you previously saw in C# and examine the resulting IL code.

To begin, remember all classes are ultimately derived from System.Object,
whether they’re explicitly coded as such and regardless of what managed language
they’re written in. The following SimpleProgram class (taken from Chapter 2’s
Hello.cs), therefore, is derived from System.Object.

class SimpleProgram

{

...

}

To see this, look at the following compiled IL code:

.class auto ansi SimpleProgram extends ['mscorlib']System.Object

{

} // end of class 'SimpleProgram'

As you open and view more and more classes in .NET, you find they’re all
derived from System.Object. Even value type objects have their roots in
System.Object. (System.Object itself, along with interfaces are the exceptions.)

Another interesting feature of the Hello.exe IL code is the explicit inclusion of
mscorlib. Mscorlib is the assembly that contains the System.Object class. The
square brackets around a module name like this indicate the module in which the
following class is located. Part of the IL code for interoperability between classes
in different modules, therefore, is to identify where a particular class or data type
is defined.

One final item to notice in the previous code is the extends keyword, which is
used to designate an inheritance relationship. Therefore, if, instead of deriving from
System.Object, SimpleProgram is derived from CSharpHeadStartProgram, the
resulting IL code would be as follows:

9 6 C # D e v e l o p e r ' s H e a d s t a r t

.class private auto ansi SimpleProgram

extends CSharpHeadStartProgram

{

} // end of class SimpleProgram

Curiously, the keyword for interface inheritance isn’t the same as for class
inheritance. Instead of using the keyword extends, interface inheritance uses
implements. Therefore, the following C# code (taken from Interface1.cs)

interface IEmployee

{

...

}

...

class Doctor : IEmployee

{

...

}

results in IL code that looks like this:

.class private auto ansi Doctor

extends [mscorlib]System.Object

implements IEmployee

{

} // end of class Doctor

The implements keyword doesn’t replace the extends keyword. As you can see,
Doctor is still derived from System.Object. However, in addition, all the methods
of IEmployee result in implementations on the Doctor class. In C#, whenever you
specify an inheritance relationship to an interface, the C# compiler generates IL code
that uses the implements keyword.

NOTE

IL code uses the implements keyword to identify inheritance from interfaces.

This is consistent with the multiple inheritance rules found in C#. A class must
have one and only one other class from which it derives; it can extend exactly one
class. In contrast, multiple inheritance is supported for interfaces. Therefore, the C#
compiler can generate a class or value type that implements any number of interfaces.

C h a p t e r 3 : . N E T , t h e O p e r a t i n g E n v i r o n m e n t f o r C # 9 7

9 8 C # D e v e l o p e r ' s H e a d s t a r t

Delegation and Events
Delegation and events are also features inherently supported in C# because they are
.NET/IL features. Let’s look at the IL code generated from the delegates.cs file
discussed in Chapter 2. In this code, a delegate called CallEmployeeDelegate was
declared as follows:

delegate void CallEmployeeDelegate();

If you open up a compiled assembly with ILDasm.exe, however, you see the C#
compiler generates a new class using this declaration and this class is derived from
System.MulticastDelegate.

.class private auto ansi sealed CallEmployeeDelegate

extends [mscorlib]System.MulticastDelegate

{

} // end of class SimpleDelegate

This demonstrates the implementation of delegation within .NET is actually a
continuation of the object-oriented nature of the IL language. Once you understand
CallEmployeeDelegate is actually a class derived from System.MulticastDelegate,
and it includes a constructor and various methods, it becomes easy to realize the
invocation involved in calling a delegate is simply a reinterpretation of any method
call on an object.

In this case, the C# design team decided it was more useful for developers if C#
obfuscated the underlying architecture of delegation and, instead, included the
keyword delegate as a means for automatically declaring delegates.

Memory Management Through Garbage Collection
Probably one of the most appealing aspects of .NET programming, at least for C++
programmers, is that memory management no longer needs to be of such primary
importance when coding. Such practices as paring up new with delete, AddRef()
with Release(), and malloc() with free() are relegated to the way of punch cards

C h a p t e r 3 : . N E T , t h e O p e r a t i n g E n v i r o n m e n t f o r C # 9 9

when programming in the managed world. The reason is all objects in the .NET
world are automatically garbage-collected by the CLR. When declaring a variable
and allocating memory in the managed world, programmers no longer need be
concerned with cleaning up the memory before the variable goes out of scope.
Instead, the common language runtime takes responsibility for doing this. The
result? A major programming headache for today’s programmers will virtually
disappear in .NET.

One of the most important characteristics of .NET garbage collection is this:
although you can guarantee all managed objects will be freed, you cannot be sure
when this deallocation will occur. Programmers need to shift from the mindset that
once a reference variable goes out of scope, its memory will be immediately restored
to the system. Just because an area of memory no longer has any references to it,
doesn’t mean the memory will be immediately released. All you can be sure of is it
will be released.

In fact, in the .NET world, all objects (except the Value Types) are created on the
managed heap. The heap is considered managed because whatever is allocated on
the heap is under the control of the CLR garbage-collection facilities. In other words,
although the managed heap bears some resemblance to the C runtime heap, you
never have to free the objects explicitly. When a .NET application begins, the CLR
reserves a portion of memory for data that the application may need. As objects are
created, the portion of reserved area the object requires is then initialized to the
initial state of the object. The heap then moves a next-object pointer to the area
immediately following the newly allocated object, so it knows where to place the
next requested object.

Before an object can be created, the CLR first checks to see if enough remaining
space is in the reserved area. If this isn’t the case, however, then the garbage collector
is run to try to free up allocated memory that is no longer being used but still
allocated. Although the garbage collector can be programmatically triggered to run,
in general, it only runs when the managed heap no longer has enough room for a
new object or because the application is being terminated. The result is that object
deallocation occurs at an indeterminate time after the object is no longer referenced.
For many C++ programmers, this is a significant drawback with few workarounds,
but we’ll postpone a discussion of possible workarounds until Chapter 5.
Meanwhile, let’s look at a few more of the details in the garbage-collection
algorithm.

1 0 0 C # D e v e l o p e r ' s H e a d s t a r t

Garbage Collection Step-by-Step
The first step in running the garbage collector is probably the most shocking to
performance addicts. Although the garbage collector runs on a different thread than
your application, this doesn’t mean your application threads can continue to run as
the garbage-collection algorithm executes. Unfortunately, because the garbage
collector actually moves objects in the reserved area, suspending all managed
threads from executing is necessary, so all pointers to moved objects can be updated
to point to the new location. (While creating special threads that aren’t interrupted is
possible, this is beyond the scope of this introduction.) Details of this are described
shortly, but readers need to be aware of this interruption in execution. Although the
entire garbage collection process is fast, it isn’t concurrent with your program’s
execution. Now, lets look at how it works.

To begin, we consider the two blocks or tables shown in Figure 3-2. The right
block is the previously introduced reserved area. In the left block, root objects,
which mark the beginning of object-dependency trees that run through an

Figure 3-2 The root objects referencing objects in the managed heap

application, are placed. These objects are held in memory because they’re usually
explicitly declared inside your application. The following is a list of possible root
objects:

� global and static object pointers

� reference type local variables on the stack

� function call parameters on the stack

� CPU registers pointing to objects on the heap

� freachable pointers (to be defined later)

Most notably missing from the list are instance-member variables. A list of each
of these root objects is kept by the CLR and, when the garbage collector runs, it
traverses this list to identify all objects referenced in the reserved area. In the process
of traversing the dependency tree, the garbage collector marks those objects it
encounters. This reduces the amount of processing required by not retraversing objects
and preventing the infinite loop case where two or more objects refer to each other.

Once all the roots are traversed, the garbage collector can walk the heap and
compact it by moving the remaining referenced objects together. As it does this, the
garbage collector also marks the various sections in the heap, based on an object’s
generation. Objects that have been through two or more garbage collection cycles
are located in Generation 2 (no generations go beyond Generation 2 at this time).
Objects that have only encountered one garbage collection cycle are in Generation 1.
As objects get created, they’re all placed into Generation 0, until the garbage collector
runs and they’re either de-allocated or compacted into the next generational area.
Figure 3-3 shows the heap as it goes through a garbage collector cycle. In this
diagram, the arrows from the root block are arbitrarily added and removed to
simulate changes.

The last step in the process is to update each pointer, so it points to an object’s
new location. This involves updating not only all roots, but also pointers inside
objects on the heap that point to other objects on the heap. As stated at the beginning
of this section, it is this step that requires all managed threads to be paused while the
garbage collector runs.

The advantage of segregating the managed heap into generations is that it enables
various optimizations to be performed. For example, rather than the garbage
collector compacting the entire heap, it could restrict its activity to Generation 0.
This can significantly help performance because fewer pointers need to be updated
due to objects being moved. Some complexities exist when objects in Generations 1

C h a p t e r 3 : . N E T , t h e O p e r a t i n g E n v i r o n m e n t f o r C # 1 0 1

1 0 2 C # D e v e l o p e r ' s H e a d s t a r t

or 2 create objects because the new objects are automatically placed in Generation 0,
but means of tracking such activity exist. The key to generational garbage collection
is this general performance assumption: the newer the object, the shorter its lifetime
will be, and the older an object, the longer its lifetime will be.

Finalization
There is one more important process within the garbage collection cycle and it is
known as finalization. Because deterministic destruction of objects doesn’t exist—in

Figure 3-3 The heap through a garbage collector

other words, you cannot predict when an object will be cleaned up and the memory
deallocated—IL code doesn’t include the concept of a destructor. Although the .NET
development languages may have such a concept, examination of IL code reveals
destructors compile into a method called Finalize(). Take, for example, the
following short C# class:

class Destroyer

{

~Destroyer()

{

System.Console.WriteLine("Finalize called");

}

}

If you examine this compiled code with ILDasm.exe, you see the resulting code
looks like this:

.class private auto ansi Destroyer

extends [mscorlib]System.Object

{

.method family hidebysig virtual instance void

Finalize() il managed

{

// Code size 17 (0x11)

.maxstack 8

IL_0000: ldstr "Finalize called"

IL_0005: call void [mscorlib]System.Console::WriteLine(

class System.String)

IL_000a: ldarg.0

IL_000b: call instance void [mscorlib]System.Object::Finalize()

IL_0010: ret

} // end of method Destroyer::Finalize

.method public hidebysig specialname rtspecialname

instance void .ctor() il managed

{

// Code size 7 (0x7)

.maxstack 8

IL_0000: ldarg.0

IL_0001: call instance void [mscorlib]System.Object::.ctor()

IL_0006: ret

C h a p t e r 3 : . N E T , t h e O p e r a t i n g E n v i r o n m e n t f o r C # 1 0 3

} // end of method Destroyer::.ctor

} // end of class Destroyer

The interesting item to note in this listing is that there is no destructor function,
a .dtor() corresponding to the .ctor() constructor, for example. Instead, we have
a new function called Finalize(). The responsibility for calling the destructor (or
Finalize() method) is assigned to the garbage collector, so an additional step needs
to be inserted into the garbage-collection algorithm. When the object is instantiated,
the CLR detects that it contains a destructor and, in response, adds a reference to the
object into a finalization queue. Surprisingly, this additional reference doesn’t
prevent the garbage collector from cleaning up the object, at least not directly. As
the garbage collector executes, it determines one of these special objects needs to
be cleaned up, just as it does normally. During the compacting routine, however, it
checks the finalization queue to see if it contains a reference to the current object.
If it does, then the object is placed into another queue called the freachable queue.
Pointers in the freachable queue are considered roots and prevent the object from
being cleaned up. The result is, even if the garbage collector continues though
several more iterations, objects pointed to by only freachable pointers are still not
cleaned up. So, how do these objects get reclaimed? The garbage collector includes
a separate thread that iterates through the freachable queue and calls the destructors.
Once this step is completed, the object is removed from the freachable queue, so it
can finally be cleaned up when the garbage collector next runs.

NOTE

Exactly when the destructor will be called, after all references to an object are removed, is
unknown.

Although the previous description is an oversimplified version of what takes
place, readers should consider carefully whether they need a destructor. First,
although a destructor is conceptually similar to the traditional destructor (such as
those found in C++ and Visual Basic 6.0), when the method will get called after
the object goes out of scope is unknown. Second, finalizable objects (those with
destructors) require multiple iterations of the garbage collector to be deallocated,
resulting in higher resource utilization over all. The impact of this is compounded
by the fact that finalizable objects may refer to other nonfinalizable objects and also
prevent these objects from being cleaned up. Because finalizable objects aren’t
added to the freachable queue in any particular order, the calls to an object’s
destructor won’t be ordered either. This can cause some unpredictable results when

1 0 4 C # D e v e l o p e r ' s H e a d s t a r t

destructors refer to contained objects. Given these caveats, developers should
consider carefully whether to include a destructor in their class.

A full discussion on various solutions to the unavailability of a deterministic
destructor in .NET is in Chapter 5. The simplest method, however, is to include a
Dispose function in place of the destructor. Such a method wouldn’t necessarily be
called automatically, but it would provide a mechanism for clients of your class to
call resource clean up explicitly.

In general, the memory management method previously described is blisteringly
fast at allocating memory and, assuming your application doesn’t require the garbage
collector to run, there’s relatively little cost for this performance enhancement. Even
when the garbage collector does run, however, the algorithm is reasonably efficient
and you can be sure it’ll constantly be tweaked through each version of the CLR.
Based on initial estimates, garbage collection times appear to be in the 1 millisecond
range on processors as slow as 200 MHz. One last point to mention is two versions
of the garbage collector exist: one is optimized for the single processor and one is
optimized for multiprocessor machines.

Strong and Weak References
In the previous section, an object preventing the garbage collector from cleaning up
another object on the heap is called a strong reference. All root objects, for example,
are strong references because they’re pointing to other objects in the heap and
preventing those objects from being released. There is another kind of reference,
however, called a weak reference. A weak reference is a class (WeakReference)
that points to another object on the heap, but the weak reference won’t prevent the
garbage collector from cleaning up the object it points to. Essentially, the weak
reference provides a means to indicate to the garbage collector, “I may use this
object again, but I don’t need it at the moment. Therefore, if you need the memory,
reclaim it.” This is in contrast to a strong reference that says, “I’m pointing to this
object, so you can’t reclaim it.” A weak reference essentially provides an object
cache. If you re-request an object and it happens to be in the cache, you can gain a
performance improvement. If the garbage collector ran during the time between the
last use and rerequest, then the object would have to be reinstantiated.

NOTE

Weak references provide a type of cache system to reuse large objects.

C h a p t e r 3 : . N E T , t h e O p e r a t i n g E n v i r o n m e n t f o r C # 1 0 5

One example where this may be used is with a search function. Imagine you have
to search a large number of objects to see if they fulfill some criteria. (Large refers
to the amount of memory consumed, which is generally where weak references are
used.) Also imagine you haven’t yet instantiated the collection of objects. To
accomplish the search, you would instantiate the collection and check the criteria
against each object in the collection. Once the search completes, the normal
procedure—assuming no weak references exist—is to allow the collection to go out
of scope or be set to null, thereby freeing up the garbage collector to reclaim the
memory. If the search needs to be repeated, possibly with different criteria, you
would be required to reinstantiate the collection (and each object in the collection)
because you no longer have a reference to it. If you never let the collection go out of
scope, maintaining a reference to it, then the garbage collector could never reclaim
the memory of the collection and all the objects within the collection. Contrast this
with the use of a weak reference. Once the search completed the first time, you
would instantiate a weak reference object as follows:

wkCollection = new WeakReference(collection);

Now, you would release the collection by assigning it to null. If, after some
period of time, the collection is re-requested, then you would retrieve it from the
wkCollection object after checking that the garbage collector hadn’t reclaimed it.
Here is the code:

collection = wkCollection.Target;

if (collection == null)

{

// GC ran so re-instantiate the collection

// and assign it to the collection variable.

}

// Now search collection

Note, any objects within the collection after the first search would also be cleaned
up by the garbage collector if the collection only had a weak reference. However,
any objects found during the search would have strong references (assuming they
were now being used), so even if the collection were to be reclaimed, the found
object would not.

1 0 6 C # D e v e l o p e r ' s H e a d s t a r t

Thread Synchronization
Developers are responsible for providing any necessary synchronization to the .NET
classes because the vast majority of .NET classes are not thread-safe. This is because
obtaining locks is a relatively expensive operation, which can lead to deadlocks
without careful programming and degrade performance unnecessarily when no
synchronization is required. The general methodology, therefore, is that you’re
responsible for providing all synchronization to an object when multiple threads
can simultaneously access it.

Rather than creating entirely thread-safe classes, it’s better to reduce the need for
synchronization by designing your application so you limit the sharing of objects
across multiple threads. Objects that aren’t shared across multiple threads don’t
require any instance data synchronization. Therefore, assuming you’re successful in
not sharing objects across threads, you only need to be concerned with static data.
The obvious solution to synchronization on static data is to avoid it having any static
data. In cases where this isn’t possible, however, an abundance of synchronization
classes are provided by the .NET Framework.

The synchronization classes you can use within your application are Interlocked,
Monitor, ReaderWriterLock, ManualResetEvent, and AutoResetEvent. Of
these, Monitor has special support in C# because it can be used automatically by
the lock keyword.

In C#, the lock keyword provides a mechanism for code block synchronization,
so you needn’t manually place a try-catch-finally block around the Monitor
class-locking mechanism to be sure to release the lock. Instead, C# does this for you
automatically via the lock keyword. The following code demonstrates how to use lock:

lock (typeof(MyClass))

{

// Place synchronized block here

}

In this case, typeof(<class>) is specified as what to lock on. In other words, the
lock is identified by the typeof(<class>), so if a different thread encounters an existing
lock on the same class elsewhere, the code is blocked. Use typeof(<class>) to
synchronize static data. If you need to synchronize instance data (meaning you were
required to share the object across multiple threads), use this as the reference type on
which to lock on. The lock keyword effectively expands to the following C# code:

System.Threading.Monitor.Enter(typeof(MyClass));

try {

C h a p t e r 3 : . N E T , t h e O p e r a t i n g E n v i r o n m e n t f o r C # 1 0 7

// Synchronized block will be here

}

finally {

System.Threading.Monitor.Exit(typeof(MyClass));

}

If you’re using synchronization to increment or decrement a variable, then you
can use the static methods on the Interlocked class instead. For example, the
following code demonstrates how to increment a shared variable:

protected static int instanceCount;

System.Threading.Interlocked.Increment(instanceCount);

In addition to increment and decrement methods, the Interlocked class also
provides Exchange() and CompareExchange() methods for replacing the data in
a variable.

If you are going to be distributing your classes to third parties, you should design
them to run under multi-threaded server conditions because of the prevalence of
Internet based applications and Application Service Providers (ASPs). The general
design guideline for running on the server is the same as what was previously
described. In other words, provide synchronization for all static data. You needn’t
synchronize instance data, however, because it’s better to design the server application
so that objects aren’t shared across requests (threads). If you are unable to avoid
sharing objects across requests, then you’re responsible for synchronizing such objects.

1 0 8 C # D e v e l o p e r ' s H e a d s t a r t

CHAPTER

4
C# Language
Comparisons

109

IN THIS CHAPTER:

Comparing C# to C++

Comparing C# to Visual Basic.Net

Comparing C# to Java

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

In this section, we compare C# to C++, Visual Basic.NET, and Java. The
information contained in this chapter is provided so you know which language
to use when, not to advocate one language over another. .NET largely

neutralizes most of the differences among the .NET languages. The functional
differences come about as a result either of decisions that language designers made
in exposing the underlying .NET features and functions or, in the case of C++,
because of its legacy. The remaining differences are then simply a matter of syntax.
The bottom line in this is for “pure” .NET applications, no reason exists for a
significant functional difference between an application written in C#, Visual
Basic.NET, or Managed Extensions for C++ (Managed C++).

Performance advantages of one language over another are also largely negated by
.NET. The performance of managed applications should be nearly equal and, if they
aren’t, this is more than likely to be a bug in the language compiler, rather than a
specific performance advantage of one language over another. This goes against
current conventional thinking when it comes to Visual Basic versus C++. Previous
to .NET, when a programmer needed maximum speed, C++ was the only choice (if
assembler is counted, that would be two choices). Conversely, when a programmer
needed to deliver something in the shortest amount of time, Visual Basic was often
used or at least was a viable option.

This sets the stage for what is about to come—individual comparisons of C# to
C++, Visual Basic.NET, and Java.

Comparing C# to C++
In this section, we compare C++ with C#. We don’t cover all the differences but,
instead, we focus on particular ones that argue for one language being preferable
over another. As stated at the beginning of this book, C# was designed as the
language of choice for C++ programmers who wanted to write managed code. Given
this heritage, it’s no surprise that C# shares significant syntax with C++. Despite the
similarities, however, a number of differences exist. To begin our comparison of C#
with C++, we focus mostly on syntactical differences. The differences are relatively
minor and, in most cases, the C# development team introduced them to reduce the
common pitfalls that occurred in C++. As we delve further into the discussion, we
begin to look at the language differences from a higher level, examining some
structural and compilational differences, as well as object-oriented differences. We
end with some of the more significant differences that may warrant choosing one
language over another for a particular purpose.

1 1 0 C # D e v e l o p e r ' s H e a d s t a r t

Before we begin any of this, however, we need to define what is meant by C++.
In other words, as we compare C++ to C#, we need to be aware of which C++
version we’re comparing C# to. We have C++ the language, C++ the development
platform—including libraries such as the MFC library and ATL—and, lastly, C++
the development environment, which, for our purposes, is Visual Studio for C++.
As if this isn’t enough, .NET also introduces Managed Extensions for C++, which
extends C++ into the managed environment.

.NET provides Managed Extensions for C++ to support the development of
managed .NET applications in C++. Aside from the syntactical C++ difference,
which we begin considering shortly, writing code in Managed C++ is functionally
equivalent to writing C# code. Despite this, developers would be ill-advised to
believe that managed C++ and C# are essentially identical. For example, the Visual
Studio 7 Win Forms Designer only supports writing C# or Visual Basic code, not
C++ (managed or unmanaged).

The majority of other differences between Managed C++ and C# are essentially
syntactical, but the syntax weighs in C#’s favor. Unlike Visual Basic, which was
able to undergo a radical transition because no cross-vendor standards existed,
Managed C++ was forced to fit in with the well-established C++ language
specification. This is essentially a good thing, except Managed C++ was still left
without many of the syntactical improvements C# made to its predecessor. The
bottom line is this: writing components in Managed C++ is harder than C#. Just the
special syntax of managed extensions alone should cause people to think twice about
doing C++ component development (never mind all the C++ language pitfalls the C#
designers could avoid because they were starting a new language).

In other words, it isn’t likely programmers will write completely new applications
in Managed C++. Rather, it is expected that programmers will write some portions
of a program in Managed C++ and the rest will remain in pre-existing MFC/ATL
C++. The use of MFC/ATL, combined with Managed C++, assumes a large base
of C++ code that was written prior to the .NET framework. Alternatively, Managed
C++ may simply provide access to specific features of C++ that aren’t supported by
C# and .NET (templates, for example).

For the rest of this section on comparing C++ to C#, we focus on describing
differences between C# and the nonmanaged form of C++, even though many of the
differences do apply to both Managed C++ and native C++. Chapter 6 includes a
relatively detailed discussion on integrating existing C++ code using the Managed
Extensions for C++ into your .NET application.

C h a p t e r 4 : C # L a n g u a g e C o m p a r i s o n s 1 1 1

1 1 2 C # D e v e l o p e r ' s H e a d s t a r t

Declarative Order Insignificant
The first syntactical difference between the two languages under consideration here
is that C# doesn’t enforce forward declarations. In other words, programmers needn’t
be concerned with making sure a particular data structure is declared earlier in the
source code, before it was actually used. The C++ requirement of always defining
data structures prior to their use forces developers to accommodate the way the
compiler works, rather than the structure that best suits the program being written.
In some ways, forcing an order to the way classes are declared subtly implies a
procedural, rather than an object-based approach to development. This isn’t surprising
given C++’s heritage in C.

The side effect of this rule for C# programmers is that variable scope rules in C#
are more restrictive. In C#, duplicating the same name within a routine is illegal,
even if it’s in a separate code block. The following code won’t compile in C#, for
example, where as it’s allowable in C++:

for(int i=0; i<input.Length; i++)

{

char c = input[i];

if(c==' ')

{

// ...

break;

}

}

char c;

The resulting error is “error CS0136: A local variable named ‘c’ cannot be
declared in this scope because it would give a different meaning to ‘c’, which is
already used in a ‘child’ scope to denote something else.”

Assignment and Equality Operators Restricted
Another essentially syntactical difference relates to conditional expressions inside if,
which, and do statements. Nearly every C++ programmer (if not all) has introduced
a bug into their code because they used the C++ assignment operator (=) rather than
the equality operator (==). The typical error goes something like this:

C h a p t e r 4 : C # L a n g u a g e C o m p a r i s o n s 1 1 3

int i, j;

...

// LOGIC ERROR:

if(j=i)

cout << i << " equals " << j << endl;

else

cout << i << " does not equal " << j << endl;

To prevent a similar pitfall from entering into the C# syntax, C# requires the only
data type that can be used in a conditional expression is a bool. The result is that the
following C# code won’t even compile.

int i, j;

...

// ERROR: Cannot implicitly convert type 'int' to 'bool'

if (i=j)

Console.WriteLine("{0} equals {1}", i, j);

else

Console.WriteLine("{0} does not equal {1}",

i, j);

Not to be outdone, however, you can intentionally perform the assignment during
a conditional statement if you want by calling the ToBoolean() function on the
integer as follows:

if ((i=j).ToBoolean())

Console.WriteLine("i is {0}", i);

else

Console.WriteLine("i is zero");

In other words, if you still want the C++ way of performing two operations at
once, then so be it.

The converse of the previous error would be to use the equality operator in place
of the assignment. This isn’t as common and, even so, this particular error generates a
warning on most modern day C++ compilers, so the fact that C# also prevents it is trivial.

Note, the previous distinction is the result of a higher level principal in C#. C#
syntax requires that execution statements must do work and conditional statements
may not do work (unless intentionally and explicitly coded to do so as in the

1 1 4 C # D e v e l o p e r ' s H e a d s t a r t

ToBoolean() example). In contrast to C++, therefore, you cannot have statements
that don’t perform any function in C#. The following is an example:

bool b;

if(b)

// ERROR: Only assignment, call, increment, decrement, and

// new expressions can be used as a statement

"I ain't doing no work";

No Fall Through switch
Another potential pitfall for C++ programmers is to forget to call break during a
switch statement, as the following demonstrates:

cout << "The value entered for j was ";

switch(j)

{

case 1:

cout << "one";

break;

case 2:

cout << "two";

// break missing so falls through

case 3:

cout << "three";

// break missing so falls through

default:

cout << "greater than three";

}

To prevent this error, C# only executes one case statement. At the end of the case
statement, C# requires an explicit jump statement be coded (break, goto, continue,
or return). The goto statement can be used to implement the fall through that C++
uses by default.

string favoriteLanguage;

...

switch(favoriteLanguage)

{

case "C#":

case "CSharp":

C h a p t e r 4 : C # L a n g u a g e C o m p a r i s o n s 1 1 5

Console.WriteLine("C# is music to my ears");

break;

case "VB":

case "Visual Basic":

Console.WriteLine("Dim is not so dull");

break;

case "C":

Console.WriteLine("I ain't got no stinkin class");

goto case "C++";

case "C++":

Console.WriteLine("-> shows the way to go");

break;

default:

Console.WriteLine("We are not talking French and German here");

break;

}

Rather ironically, the explicit jump statement at the end of each case statement
was included in the language specifications, so the code was clear for C++ developers
who might not realize no fall through was supported in C#.

Note, one significant improvement over C++ syntax is the availability of using
strings within the switch statements expression. This eliminates the need to set up
an array that maps strings to integer or character values.

Exception Processing
One relatively minor feature C# supports, that isn’t found in native C++ (Managed
C++ does include this feature), is the finally statement. This is used to write
termination code guaranteed to be called on exit from a try-catch block, whether
or not an exception was called. To achieve the same result in native C++ requires
programmers to duplicate the code in two places. In C++, each catch block must be
sure to call a finally() type function or use a goto in order to jump to a finally block.
Even with the extra code, there’s also the subtle case of an exception occurring within
a catch block, which requires even more special handling. In C#, the finally block is
written once and it’s guaranteed to be called.

Iteration Using foreach
The foreach() statement in C# was borrowed from Visual Basic and doesn’t exist in
C++ at all. The keyword is used to iterate over any object that explicitly or implicitly
supports the IEnumberable interface. (The object must be derived from IEnumberable

1 1 6 C # D e v e l o p e r ' s H e a d s t a r t

or simply implement all the functions of IEnumberable without actually being
derived from it.) In C++ (and Java), equivalent functionality requires the for loop.
The advantage of foreach, however, is it automatically detects the boundaries of the
collection being iterated over. Furthermore, the foreach statement syntax includes
a built-in iterator for accessing the current item in the collection. Using a regular
for loop is a suitable solution, but the ease of use provided by the foreach adds one
notch into the C# quiver. This is undoubtedly true when iterating through COM
collection from C++. Such an exercise, although uncomplicated, requires an
inordinate amount of code in comparison to the foreach statement. It deserves
mention that many of the STL collections do provide similar features as the foreach
statement. However, STL iteration is still more complicated than foreach.

Additional Native Data Types
Because C++ doesn’t support a native string type, all but the most basic of string
manipulations require an additional library, such as the STL library. Even with the
standard C runtime library, strings are second-class citizens because string manipulation
functions are essentially procedural rather than object-oriented. For example, rather
than calling an external function to convert a string to an integer as you would in C++,
C# supports the ToInt32() function as a member of the string class.

One class that diminishes the significance of not having a native string type is
MFC’s CString, which can now be included into your projects without having to
link to MFC. Even so, C++ programmers won’t mourn the loss of the BSTR data
structure, which required careful thought when it came to memory management,
even with the help of MFC’s CString, ATL’s CComBSTR, or Visual C++’s
compiler COM support class _bstr_t.

Finally, C# programmers can disregard whether the string they’re manipulating is
a wide-character string or an ANSI string. This means you no longer need to surround
all literal strings with and _T or an _TEXT. More importantly, because the .NET
Framework is supported on all Windows 9x platforms and beyond, you no longer
need to deliver both a multibyte and a UNICODE version of your binary files.

NOTE

C#, and the .NET framework in general, have virtually eliminated the inordinate amount of
attention the strings required to write code for both UNICODE and multibyte character compile.

One last minor point regarding strings: C# provides the capability to enter string
literals verbatim. For example, rather than prefixing every backslash character with
an escape character (a second backslash), C# can interpret the string verbatim. This
reduces the number of errors that occurred in C++ when quoting paths. The following
is a C# verbatim string.

··string dangIt = @"Why can't the $%@#(?%\n%!@#$ compiler

····do what I mean and not what I tell it.";

··Console.Write("{0}", dangIt);

Note, the line-feed character is also interpreted literally, along with the spaces
that precede the first letter on the second line. In other words, the output from this
is as follows:

Why can't the $%@#(?%\n%!@#$ compiler

····do what I mean and not what I tell it.

In both listings, a ‘·’ character represents a space at the beginning of the line.

NOTE

C#’s bool data type cannot be implicitly or explicitly cast to any data type except object.

In C#, Boolean is a native type and cannot be converted to any other type without
explicitly calling a conversion function on the class. Conversions like the following,
for example, won’t compile in C#.

bool b = true;

int i = (int)b;

This is relevant because it prevents errors that result from assuming true to be a
particular value. Testing an integer for a value of true required checking for not false
(or not equal to zero). Such errors were more frequent when programming for COM
because the Boolean data type in COM was VARIANT_BOOL, which used –1 for
true (VARIANT_TRUE). The result is a comparison of a VARIANT_BOOL with
a C++ bool type which often yielded incorrect results if not handled correctly. For
example, a comparison of VARIANT_TRUE with true would yield false, even
though logically they’re intended to represent the same value. By preventing C#’s
bool (System.Boolean) from being cast—either implicitly or explicitly—to any other
data, type errors, like those previously mentioned, can be curtailed. (To force a Boolean
to an integer value in C#, you can use the instance method, System.Boolean.ToInt32()
or its equivalent.)

Another data type distinction is that null in C# is a keyword because, in fact, null is
considered an intrinsic value. The implications of this aren’t particularly great but, in
some instances, errors in C++ could be eliminated, especially when passing a pointer

C h a p t e r 4 : C # L a n g u a g e C o m p a r i s o n s 1 1 7

along and forgetting to dereference the pointer. Because NULL is represented by
a 0 in C++, the potential exists for a subtle bug (one of the worst kinds) to occur.

From the previous examples, you can gather that the distinguishing characteristics
of C++ when it came to native data types were to reduce the occurrence of bugs that
commonly occurred in C++. This same theme permeates most, if not all, of the
syntactical differences between C# and C++.

NOTE

Because C# structs are value types, creating a complex “fundamental” type is possible, something
that couldn’t be done with C++.

Another significant difference when it comes to data types is that a struct in C# is
a value type, as pointed out in Chapter 2. The result is new “fundamental” data types
can be created and added to the language. This is something that was never possible
in C++. Not surprisingly, it could be argued that such a feature could be abused by
defining structs that are too large and, thereby, create a performance bottleneck.
However, the C# documentation clearly states what the intention of custom structs
should be and even includes guidelines on maximum memory footprints.

No Pointers Per Se
Because we mentioned the “pointer” word in the last section, let’s discuss it next.
C# has no pointer operators at least in safe code and C++ does (->, *, and &), which
is one of the defining differences between C++ and C#. In C++, programmers need to
pay vigilant attention as to whether or not they’re programming variables that are
pointers. In fact, this distinction is so significant that C++ has adopted a naming
convention in which all pointers are prefixed with a p. C++ compilers are usually
smart enough to notify you when you have inadvertently treated a pointer as a value
or vice versa. In contrast, however, C# doesn’t even require you to be aware of what
type you’re working with, at least as far as syntax goes. Whether an object is passed
as a reference or as a value type makes no difference to the syntax of either the caller
or the callee. This doesn’t mean programmers can completely ignore whether the
data type is a value or a reference but, for the most part, the distinction becomes
periphery. For the majority of cases, C# programmers only need be concerned with
identifying a reference or value type when defining a new data structure, or when
deciding how parameters will be passed to a function.

Because no pointers are in C#, obviously, no pointers to functions exist. However,
the .NET Frameworks delegate type fulfills the need for function pointers and does

1 1 8 C # D e v e l o p e r ' s H e a d s t a r t

it better than C++. In C#, for example, you can define multicast delegates, which
requires significantly less code (and, therefore, less work) than would be required in
C++ for similar functionality.

One last word about pointers: C++ includes a void** pointer, which enables
programmers to pass around structures of an unknown type. This feature is often
referred to as returning a covariant data type when returning from a function
call. Although void** isn’t supported in C#, every data type in C# is derived
from System.Object, as we already pointed out. You can cast any data type to a
System.Object, therefore, and pass that between functions to achieve the same
effect as void**. And, furthermore, because System.Object supports the GetType()
function, you can always identify what type an object is, which isn’t something
easily supported with void**. In fact, a cast to and from a void** almost always
requires the use of reinterpret_cast, which entirely removes any type safety the C++
compiler could support either at compile time or at runtime. The result is that a
misinterpretation of the type could result in some unpleasant errors.

Arrays
Unlike native arrays defined in C++, a C# array is actually a class, System.Array.
The result is arrays have built-in functionality for such operations as sorting,
searching, and reversing. Although not inherently the same in C++, the same
functionality is available in C++’s STL classes. In fact, the STL array/collection
classes have the added advantage of supporting a specific data type rather than a
generic type, such as an object. This is done through the use of templates, discussed
a little later in this chapter.

Another syntactical difference between C++ and C# occurs in the declaration of
an array. In C++, the square brackets (“[]”) are associated with the type, not with
the variable. In C++, the code would be:

int quadruple[2];

whereas in C#, the code is:

int[2] quadruple;

The difference is minor and, although some would argue the C# version is more
logical, opinion is probably divided based on personal preference and what a
programmer is most accustomed to. What is more significant about array declaration

C h a p t e r 4 : C # L a n g u a g e C o m p a r i s o n s 1 1 9

1 2 0 C # D e v e l o p e r ' s H e a d s t a r t

differences is that C# supports special syntax to initialize arrays efficiently. This
syntax was covered in-depth in the Language Overview.

One last distinction is this: arrays in C# are always reference types rather than value
types, as they are in C++.

No Preprocessor
At this point, we begin to move away from mainly syntactical differences and begin to
examine more substantial items. The first of these is that C# doesn’t have a preprocessor.
On the positive side, this means C# compiles will usually be significantly faster than
those performed by C++.

Because no preprocessor exists, there’s also no #including of files. This, combined
with the fact that predeclarations in C# aren’t required, enables C# to combine the
class declaration with the class’s implementation. Some may argue that separating out
the declaration from the implementation is a feature. However, given that interfaces
can be used to achieve abstraction like this, coupled with the fact that a class can be
viewed in an assembly without also examining the implementation, means whatever
is offered by separate files isn’t lost in C#. What isn’t present, however, is the burden
C++ programmers generally face in always having to modify two files whenever a
class’s definition changed. Rather than requiring programmers to edit both a header
file and an implementation file, just to make a slight alteration in function signature,
C# combines both in the same file. Furthermore, developers are freed from the burden
of searching for the right header file to include, and then verifying it’s included in the
right order.

So far, not having a preprocessor offers some advantages to C#, but the cost of
not having a preprocessor is no macro support in C#. Two main advantages exist to
having macros. The first advantage is macros can be used to reduce repetitious
typing. Consider the following trace macro:

#define TRACE(Code) Console.WriteLine(#Code " = {0}", Code)

In this example, Code isn’t limited only to being a variable. Instead, you could
place code snippets within the macro as follows:

TRACE(2*Math.PI*r);

This would yield an output of:

2*Math.PI*r = 31.415926535897931

Many macros can and should be replaced with functions, as is demonstrated by
the following example.

C h a p t e r 4 : C # L a n g u a g e C o m p a r i s o n s 1 2 1

#define SQUARE(x) x*x

n = SQUARE(l++)

Here x is incremented twice, which is almost certainly not what a user of the
SQUARE macro would expect without examining the code. Clearly, one of the
problems with macros is sometimes they cause unintended consequences. Assuming
a macro writer avoids these, however, and assuming the macro cannot be replaced
with a function, as is the case with the previous TRACE example, C# simply
doesn’t have an equivalent feature.

One advantage often touted to prove macros are better than functions is that the
macro performs faster because all code is placed inline, avoiding the overhead of
calling a function (stack allocation, and so forth). In C++, functions can be defined
with the inline keyword, which instructs the compiler to replace a function call with
the code of the function body directly inside the caller, exactly as a macro would.
Although C# doesn’t support the inline keyword, Microsoft claims the compiler is
smart enough to know when to inline code automatically so, in theory, macros don’t
offer a performance benefit. A few instances where inlining may occur include
property get and set accessors, and when using sealed types.

Note, even though C# doesn’t support a preprocessor, it still includes limited
implementations of #define, #elif, #else, #endif, #error, #if, #line, #undef, and
#warning. These aren’t full feature equivalents to C++ (obviously, or what would be
the point of the previous discussion?). #define can only be followed by an identifier,
for example, and the identifier cannot be assigned a value, as in

// This is not valid in C#

#define TRACELEVEL 5

In Chapter 5, we examine ways to overcome the lack of macro support in C#.
Note that C# also supports an attribute called ConditionalAttribute (Conditional).

The Conditional attribute provides a compile time switch for compiling a function
to a “no op” based on whether a string symbol is defined or not. If the string is not
defined then the function body is not included in the compiled code. The following
example demonstrates how to use the Conditional attribute.

[System.Diagnostics.Conditional("DEBUG")]

public static void ConditionalMethod()

{

// Do stuff here

}

In the preceding case, DEBUG is the symbol that needs to be defined in order for
the ConditionalMethod() to be included. Note that even if DEBUG is not defined,
you do not need to remove any function calls to ConditionalMethod(). The
compiled code will still contain the declaration of the method. The content will be
an IL nop instruction, however, as shown in the third to last line that follows.

.method public hidebysig static void ConditionalMethod() il managed

{

.custom instance void

[mscorlib]System.Diagnostics.ConditionalAttribute::.ctor(

class System.String) = (01 00 05 44 45 42 55 47 00 00)

// . ..DEBUG..

// Code size 2 (0x2)

.maxstack 8

IL_0000: nop

IL_0001: ret

} // end of method EntryPoint::ConditionalMethod

No Templates
Templates are a form of macro on steroids. Modern day C++ compilers include
support for templates, and one solution C++ programmers might attempt in place of
a macro in C# is to use templates. Unfortunately, this wouldn’t be possible because
C# doesn’t support templates either. Templates, also known as generics, enable you
to write a class or method generically for any type while maintaining the type
identity. The data type is required to support any functions the template calls. The
most common use of templates is for collection/container classes or (as with ATL)
smart pointers, but other uses also exist.

Consider the following class:

struct point

{

public point(

double x, double y)

{

this.x = x;

this.y = y;

}

public double x;

public double y;

}

1 2 2 C # D e v e l o p e r ' s H e a d s t a r t

The class is clearly designed to handle a pair of coordinates. However, essentially
nothing is unique about this class except that it contains two objects of a particular
type, Double. What if you could define such a class that could generically contain
any object? Such a class would require the use of templates, as follows:

template <class T, class U>

struct Pair

{

public Pair(T First, U Second)

{

this.First = First;

this.Second = Second;

}

public T First;

public U Second;

}

This class can pair any two data types together even if they aren’t the same.
Essentially, a template enables you to write a class in which the type of data in the
class is a parameter to the class at declaration time.

Unfortunately, C# doesn’t support templates (at least not in Version 1.0) and no
equivalent exists either. Chapter 5 includes a discussion of how to overcome this
missing feature.

Multiple Inheritance
As you learned in the previous chapter, C# doesn’t support multiple inheritance of
classes, in contrast to C++, which does support them. The degree to which this is a
problem is discussed at length in Chapter 5, along with some design decisions that
can be made to reduce the need for multiple-inheritance. The bottom line, however,
is that such a feature isn’t supported. Some language purists argue this is a good
thing because often the feature is misused. However, the world clearly has
hierarchical relationships in which one object has is-a relationships with at least two
other objects and, therefore, losing the entire structure to protect a few unsuspecting
developers from making a poor design choice seems a pity.

Perhaps surprisingly for some, the story on multiple inheritance doesn’t stop here,
however. At the COM interface level in C++, multiple inheritance isn’t supported
either, whereas it is supported in C#. Interfaces in the C++ COM world are defined
in a language known as interface definition language (IDL), although IDL doesn’t
let you define new interfaces derived from multiple interfaces.

C h a p t e r 4 : C # L a n g u a g e C o m p a r i s o n s 1 2 3

Interfaces defined in IDL are used to generate C++ header files by the MIDL
compiler and these header files use structs to declare the interface. C++ structs,
however, do support multiple-inheritance, so why the restriction? Why can’t the
MIDL compiler simply combine the two interfaces into one, stacking them on top
of each other in the vtable layout? The reason is that the exact vtable layout for an
interface is immutable and, given that every interface must begin with the methods
of IUnkown at its root, it isn’t possible to lay one interface after another without
duplicating the IUnknown methods or mutating the interface. Because the .NET
Framework doesn’t have the burden of supporting IUnknown, the abandonment
of multiple interface inheritance isn’t required, and is, instead, fully supported.

Calling Libraries
While we’re discussing C# simply falling short of C++, let’s examine calling
external native libraries, more specifically, the Win32 API. C++ provides native
access to Win32 system calls, as well as other third-party libraries. Included in
standard C++ header files is a myriad of function declarations that make calling
these APIs relatively trivial.

Not to be outdone, C# does provide a facility for making native Win32 calls,
although this is slightly more difficult than C++ because it requires the programmer
to declare the function by hand using an import statement. This can sometimes be
a challenge for developers who aren’t already familiar with the particular API being
called or who simply don’t have the Win32 experience to make the calls in the first
place, regardless of the language. C# doesn’t stop there, however. The vast library of
classes included with the .NET Framework is intended to provide an object-oriented
wrapper for the majority of the Win32 API set. This significantly reduces the need
even to make direct Win32 calls and, instead, provides a vastly simpler object-oriented
mechanism for making the calls.

Building Component Libraries
Without taking into account Managed C++, C++ basically offers two approaches for
building and distributing components on the Windows platform. You can build a
library DLL or build a COM server. Both require significantly more effort than C#
and .NET.

Library DLLs require C style declarations and are generally only designed to
interoperate with other C libraries (though, these days, most languages support some
mechanism of calling a DLL). You can link to class libraries in two ways. The first
is to statically bind to the library in such a way as to embed the library within the
compiled code. The second method is to bind to the library at runtime, using a call

1 2 4 C # D e v e l o p e r ' s H e a d s t a r t

to LoadLibrary(). Both these methods are essentially procedural. The first also
suffers from an increased executable size. The second, has little or no versioning
capabilities.

While Visual C++ includes built-in support for COM programming, and this
support is significantly easier with Visual Studio 7, the bottom line is that
programmers are still required to implement IUnknown. This also makes creating
COM components more complicated.

Memory Management
Little doubt exists that one of the most significant areas of comparison between
native C++ and C# is in memory management. More specifically, the fact that all
heap-allocated memory in C# is managed by the CLR garbage collection algorithm.
The result is that each language has various advantages and tradeoffs the developer
must consider when selecting which language to code. Because most of this material
has already been covered and is discussed further in Chapter 5, we leave this
discussion relatively short.

� In C++, the developer decides whether structs and class instances are placed on
the stack or the heap.

� In C++, any heap-allocated data requires an explicit deallocation call. This has
been made significantly easier through the use of smart pointers, but it’s still
one of the leading causes of memory leaks. The responsibility of the C++
programmer to verify that allocation and deallocation calls pair up cannot be
understated.

� C++ has a high degree of control over when memory is released.

� The C# programmer has to abdicate memory deallocation decisions to the
garbage collector. In C#, there isn’t even a delete keyword to free up memory.
(The garbage collector can be manually triggered to run, however.)

� C# has no means of supporting automatic finalization when a heap-allocated
variable goes out of scope. This inherently results in greater memory usage
overall and requires programmers to make a paradigm shift in how they
program. (When interfacing with COM+, deterministic finalization can be
achieved although restrictions exist.)

� C# allocates memory in large chunks. The result is that initialization of
data types is extremely fast, as long as the garbage collector doesn’t have
to run.

C h a p t e r 4 : C # L a n g u a g e C o m p a r i s o n s 1 2 5

� Garbage collection freezes execution of all managed threads until it completes.

� As previously stated, C# structs are stack allocated and class instances are heap
allocated.

� C++/COM requires explicit reference counting calls that increase the number
of round trips between components.

� C++/COM is susceptible to errors by clients outside its control that don’t
correctly handle reference counting.

� To gain direct access to memory in C# requires unsafe and fixed constructs.
This is extra programming overhead not required in C++.

Given the length of this list, it should be clear that choosing a language based on
memory management alone isn’t an easy decision. Software designers need to give
careful consideration to their particular application requirements when they select
whether or not to write in the managed world.

Performance
Based on the earlier discussion of performance among .NET languages, what we’re
left with here is a discussion of native C++ applications against .NET applications.
You would expect that given the supposed overhead of the .NET runtime, the
performance of C++ code to C# code would vary considerably. This doesn’t appear
to be the case, though. Several performance advantages can be gained in memory
management through garbage collection, as discussed in Chapter 3.

There’s also the performance of the developer to consider. The programmer is
given much less responsibility for things such as memory management, which lets
them concentrate on building applications and components, and lets them forget
about memory management.

Note, for specific cases where direct memory manipulation is required, native
C++ offers an advantage through its built-in support for direct memory manipulation,
without requiring unsafe and fixed modifiers. There’s no reason to assume at this
time that direct memory manipulations will be any faster or slower in either
environment. Both will translate the program code into native executable code prior
to being compiled.

The one context where native C++ code offers a clear advantage over the managed
world is in real-time applications. Real time has a broad variety of definitions, so
it isn’t possible to state unequivocally that C# shouldn’t be used to run real-time
applications. If program requirements are such that a particular piece of code must
execute within a short window of time, however, we recommend avoiding C# and the

1 2 6 C # D e v e l o p e r ' s H e a d s t a r t

C h a p t e r 4 : C # L a n g u a g e C o m p a r i s o n s 1 2 7

managed environment. The garbage collector shuts down all managed threads when
it runs, and there’s no telling when the garbage collector will run, so short execution
windows could easily be missed. This problem can be avoided using C++-based
unmanaged worker threads.

Comparing C# to Visual Basic.NET
Visual Basic.NET is a completely new version of Visual Basic for the .NET
platform. It retains much of the syntax of its predecessor, Visual Basic 6, while
introducing significant new functionality, including support for true object-oriented
constructs, such as inheritance. For those keeping score at home, what this means
is Visual Basic 6 had a major overhaul on its way to becoming Visual Basic.NET
or VB.NET. Because VB.NET is Common Language Specification-compliant, it
includes support for single object inheritance, structured exception handling (try,
catch, and finally), native interface definition, delegates, shared class members,
and a set of new operators. With these changes, Visual Basic.NET has gone from
being a good “glue” environment for rapid development of Windows
GUI applications to a first-class component software development environment.
Programmers no longer need to resort to C++-based COM components to write the
more challenging portions of their code.

This is a boon to existing Visual Basic programmers who have been requesting
these features from Microsoft for years, but it comes at a big price because VB.NET
is essentially a new programming language. Microsoft is providing a program that
converts existing VB 6 projects to VB.NET but, to truly take advantage of the .NET
features and functions such as inheritance, redesigns and rewrites are required.

As is the case with Managed C++ and C#, VB.NET and C# differ primarily in
syntax. C# inherits much of its syntax from C and C++, while Visual Basic.NET
inherits much of its syntax from Visual Basic 6. Programs of near-equal functionality
can be written with either language, but a few significant differences still exist
beyond syntax between C# and VB, which are worthy of discussion. That discussion
follows.

Built-in Late Binding Support in VB.NET
Visual Basic.NET provides built-in support for late binding to COM objects. For
those times when you need it, this can be a significant programmatic savings. To
achieve the same result in C# requires manual programming using COM interoperability
infrastructure and reflection. This requires significantly more effort than the Visual
Basic syntax.

No Support for Operator Overloading
Visual Basic.NET doesn’t directly support operator overloading. As such, it cannot
officially use or access operators overloaded in languages such as C#. In any event,
.NET interoperability guidelines recommend that a type (class or structure) with
overloaded operators should also provide companion methods that represent the
overloaded operator. For example, if the + operator is overloaded, then an Add()
method should also be provided. This negates much of the advantages of overloading
operators for classes intended to interoperate with other .NET languages like VB.NET.

The following example shows a Visual Basic.NET sample program that uses the
Vector struct type from Chapter 2.

' Tests the C# vector type

' from Visual Basic.NET

Imports System

Imports CSharpHeadStart

Module EntryPoint

sub Main()

Dim v1 as new Vector(1, 1, 1)

Dim v2 as new Vector(1, 2, 3)

'no can do

' v2 = v1 + v2

'can do, but officially supported?

v2 = Vector.op_Addition(v1, v2)

Console.WriteLine("v1 + v2 = {0}", v2)

End sub

end module

The previous code yields the following results:

v1 + v2 = 2,3,4

An attempt to execute the commented line of code that adds the vectors together
results in a compiler error. The VB compiler doesn’t know how to interpret this
operator when it’s applied to Vectors. The Vector.op_Addition() in the next line of
code is generated by the C# compiler for the overloaded addition operator. You can
see the method names by the C# compiler for overloaded operators by inspecting the
program’s metadata with ILDASM.EXE.

1 2 8 C # D e v e l o p e r ' s H e a d s t a r t

C h a p t e r 4 : C # L a n g u a g e C o m p a r i s o n s 1 2 9

Using the generated method, instead of a method provided by the type definition,
puts your code at the mercy of the C# compiler and any future changes to code
generated by the compiler. So, the only question remaining is, if overloaded
operators are only supported in a subset of .NET languages and a companion
method needs to be provided anyway, what’s the real advantage of them?

Safe Mode and Pointers
Visual Basic.NET has no unsafe keyword and no way to define pointers. Any
programming requiring direct memory pointers must be done either in unsafe
C# or in native C++. Visual Basic does include an AddressOf operator, but its
use is limited to creating method delegates. Because of .NET’s cross-language
capability, this isn’t that bad because it’s easy to define a public class in C# for
use in VB.NET.

Arrays
Visual Basic.NET doesn’t support the jagged arrays of C#, though it does provide
support for dynamically resizing arrays with the ReDim statement. A similar result
can only be achieved in C# by manually allocating a second array with the new
dimensions and copying the contents from the original array to the second. The
array class does have copy methods that can be leveraged for this purpose.

This is a good time to point out that the lower bound of all arrays in Visual
Basic.NET is 0. An experienced Visual Basic programmer might have assumed that
flexible bounding of arrays in Visual Basic was an advantage but, alas, it isn’t. This
allows public VB arrays to easily interoperate with other languages, but this is also
a good example of “least common denominator” design.

switch vs. Select Case
VB.NET’s Select Case evaluates a select expression against a series of case
statement expressions while C#’s switch matches an integral or string expression to
a list of constant expressions. VB.NET’s support of case statement expressions, as
opposed to constants, yields the possibility for much richer select statements than is
achievable in C#. Similar to C#, VB.NET also supports transfer of control within a
statement block using goto, but a label is required. Both languages prevent case fall
through, however. In the case of C#, an explicit flow control statement, such as a
break, is required, while in VB, the statement block simply stops executing.

Consider the following VB.NET sample:

Imports System

Module Module1

Sub Main()

Dim favoriteLanguage As String

Do While True

Console.Write("> ")

favoriteLanguage = Console.ReadLine()

If favoriteLanguage = "" Then

Exit Do

End If

Select Case favoriteLanguage

Case "C#", "CSharp"

Console.WriteLine("C# is music to my ears")

Case "C"

Console.WriteLine("I ain't got no stinkin class")

Goto here

Case "C++"

here:

Console.WriteLine("-> shows the way to go")

Case "VB", "Visual Basic"

Case "A" To "z"

Console.WriteLine("Dim is not so dull")

Case Else

Console.WriteLine(_

"We are not talking French and German here")

End Select

Loop

End Sub

End Module

In the previous sample, we can express a range of matches using the To statement.
The amount of code required to do this with C#’s switch statement would make
using it alone impractical. An if() inside the default case is required to handle the
range checking. The C# if() version included in the following helps to illustrate
what’s happening in the VB To.

1 3 0 C # D e v e l o p e r ' s H e a d s t a r t

default:

if ((String.Compare("A", inputString) <= 0)

&& (String.Compare("z", inputString) >= 0))

Console.WriteLine("Dim is not so dull");

else

Console.WriteLine(

"We are not talking French and German here");

break;

}

With Blocks in VB.NET
We end our VB comparison with a minor syntax convenience. VB.NET supports
namespaces just like C# but, over and above namespaces, With and End With can
be used in Visual Basic to support inline short cuts to objects references. No
construct is comparable to With in C#. The following lists a brief example:

Imports System

Class SimpleClass

Sub SimpleSub()

Console.WriteLine("simple sub")

End Sub

End Class

Module EntryPoint

Sub Main()

Dim mySimpleClass as New SimpleClass

With mySimpleClass

.SimpleSub

End With

End Sub

End Module

This statement comes in especially handy when doing a large number of
interactions with the same class, for example, when loading or retrieving data
from a record set.

C h a p t e r 4 : C # L a n g u a g e C o m p a r i s o n s 1 3 1

1 3 2 C # D e v e l o p e r ' s H e a d s t a r t

Comparing C# to Java
Now that we’ve compared C# to C++ and Visual Basic, we’ll turn our attention to
Java. This section concentrates on a comparison of the languages, but it wouldn’t be
complete without some discussion of the Java platform as well. Like C#, much of
what Java is about is derived from the software platform it runs on, the Java Virtual
Machine (JVM) and the Java Foundation Class library.

Java’s goals are to provide a simple, robust, object-oriented, secure, easy to
deploy, cross-platform environment for users building component-based software.
These goals are consistent with the goals of C# and the .NET Framework.

Both C# and Java are language descendants of C++. At the same time, both C#
and Java make significant changes to C++ in order to simplify programming. This
simplification is achieved through features such as garbage-collected runtimes,
single-file construction semantics, tight type checking, lack of header files, and the
lack of requiring forward declarations of classes. The bottom line is less Java or C#
code class is required to perform similar functions than C++, and less code to
perform the same function is a good thing no matter how you look at it.

Both languages support single inheritance with “object” at the root of their object
hierarchies, providing rich built-in string types as well. Objects (nonprimitive types)
are allocated on the heap using the new operator and are garbage collected by their
respective runtimes. Both have extensive class libraries to support the language.

All code is written in classes and neither global variables nor global functions are
supported. Static class data and methods are provided, however, which allows what
would otherwise be disconnected sets of methods and data to be defined in classes.

Java compiles to intermediate byte codes that are loaded and executed by the
JVM. While the initial design for Java was as an interpreted language, Just-In-Time
(JIT) compilers have been an option for quite some time. As we’ve discussed
already, C# compiles to Intermediate Language (IL) which is loaded, Just In Time
compiled and executed by the .NET Common Language Runtime. No interpreted
mode exists for IL at the current time.

With the help of intermediate language, which is platform-independent, programs
can be automatically deployed to clients simply by copying the programs to the
client. This assumes, of course, that the required runtime is already loaded and the
program requires no special services.

Because the runtime environment executes all code, it also provides access to
system resources and can, therefore, tightly control access to those resources. In fact,
one of the strongest initial selling points of Java was it didn’t allow direct access to
local resources and, therefore, was far more secure than ActiveX technologies for
doing Web deployment. The bottom-line requirement of the runtime is that applications

must be granted access to system resources. In addition to this, assuming a solid
runtime environment, there should be no way for a program to crash the system.
It may well fail for a variety of reasons, but a hard crash should never happen.

Metadata is accessible via reflection interfaces in both C# and Java. Code can
be loaded and executed using reflection interfaces in both environments. Chapter 3
has a detailed discussion of .NET reflection. Java’s reflection APIs support similar
capabilities for navigating the classes, and their fields and methods, as well as
providing a mechanism to invoke methods via java.lang.reflect.Method.invoke().
Java doesn’t include the capability to define custom attributes.

C# and Java both support automatic generation of documentation from source
code, though they achieve this using slightly different methods. C# uses comments
with XML-based tags and Java uses comments with special attributes. In C#, the
compiler generates the output XML file via the /out command, while Java uses a
separate Javadoc utility that invokes the Java compiler. The Javadoc tool produces
HTML output, whereas the C# tool produces XML. The base requirement for class
documentation is nicely satisfied with the ready-made HTML output produced
by Javadoc.

One of Java’s stated goals is to be cross-platform. Java has already largely met
this goal in that the Java runtime is available for a large number of platforms above
and beyond Windows, including Unix, Macintosh, and Linux, as well as mobile and
network computing platforms. Before jumping to the conclusion that Microsoft’s
goals are not cross-platform or that their only desire is to run .NET on Windows
platforms, consider that .NET does provide open platform services that target both
multiple clients and language neutrality. At least part of the reason for submitting C#
and the Common Language Runtime to ECMA for standardization is to facilitate the
development of these technologies on other platforms. At a minimum, both Microsoft
and Sun have serious intentions on gaining market share in mobile and embedded
platforms, including portable phones, PDAs, set top boxes, and the obligatory
toasters with their respective platforms.

With all the good intentions of cross-platform compatibility or the “Write Once
and Run Anywhere” ideal of Java, Java is not a completely open platform. Essentially
all code that runs on a virtual machine must be written in Java, and, gaining access to
services not provided by the Java runtime requires significant programming effort.

Packages, Namespaces, Assemblies, Source Files,and Versioning
Java packages have attributes of both .NET assemblies and C# namespaces. Packages
contain all the distribution code and configuration required for an application or
library. The import directive in a Java program dictates the location of a package,

C h a p t e r 4 : C # L a n g u a g e C o m p a r i s o n s 1 3 3

1 3 4 C # D e v e l o p e r ' s H e a d s t a r t

while in C#, the using directive only provides a hint as to the actual structure or
location of the assemblies. The separation of the logical namespace from the physical
layout in C# keeps all packaging and directory location issues out of the source code.

An advantage the C# and .NET assembly concept have over packages is that
multiple versions of the same assembly can be installed and running at the same time
on the same machine. Java packages essentially require that classes be placed into a
directory specific to the package and the source code dictates which package gets
loaded. The same effect as .NET assemblies could be achieved by changing source
code, but that isn’t an attractive alternative.

At the source level, the convention for Java is to put one public class in each file
and, in fact, some compilers require this. C# allows any source file arrangement the
developer might find desirable or convenient.

Primitive Types
The base primitive types supplied by Java are effectively the same as value types in
C#, however, they’re implemented a bit differently. In C#, all value types are derived
from objects, whereas, in Java, the primitive types are special. Wrapper classes are
provided for each primitive type, so they can be treated like objects; however, as
objects, they can no longer be treated like primitive types. C# provides the automatic
boxing and unboxing technique to move the value types between value and reference
as needed and, therefore, allows the value type operator semantics to be maintained
with little or no effort. In Java, this transformation must be performed manually
using the appropriate wrapper class.

Java doesn’t provide for operator overloading, so a type (class) you define in Java
cannot look or act much like a primitive type. Finally, C# supports a struct type and
Java doesn’t.

The Java Integer object (as opposed to the int type), for example, cannot be used
to do arithmetic, which would be possible if Java supported operator overloading.
C#’s “everything is an object” approach provides great convenience. The same
boxing and unboxing approach could be taken in Java, but it must be built by hand
by the developer and will have a less functional result.

Class Definition and Usage
Although classes are defined and used in essentially the same way in C# and Java, a
few noteworthy differences exist. In Java, class members are virtual by default and a
method having the same name in a derived class overrides the base member. In C#,
the base member is required to have the virtual keyword and the derived member is
required to use the override keyword. An attempt to hide a base member without
specifying override results in a warning and an attempt to hide a base nonvirtual

base member result in a compiler error unless the new modifier is used. New has no
complement in Java. The other issue with the Java approach is that calling a virtual
function is a bit slower than calling a nonvirtual function because a virtual call cannot
be resolved until runtime, while a nonvirtual function can be resolved at compile time.

Some differences also occur when declaring member access. Reviewing the C#
access rules provided in Chapter 2 might help before proceeding here because the
same keywords have different meaning, even though the end result is similar. Java
supports public, protected, private, and package access for class members, and the
access modifiers apply to the classes, not to the instances themselves. This makes a
difference with private access, which is virtually identical to private access in C#,
except a class instance can access private members of other instances of the same
class. An example is included in the following. Public access is identical to C#.
Protected access in Java is effectively the same as C#’s internal protected, except
a Java derived class outside the assembly cannot directly access the protected class
members inside the assembly. Lastly, package access, which you get in Java by not
specifying an access modifier, is the same as internal in C#. The only difference
here is C# enables you to specify internal access explicitly, while Java leaves it as
the default when no other access modifier is provided.

In Java, access in subclasses can be expanded, but not reduced. In other words,
protected access can be turned into public, but not into private. C# doesn’t allow this.
An attempt to expand an access modifier in a derived class results in a compile error.

As mentioned previously, Java access levels apply to the class and not to the
instances, which means private properties are accessible from within other objects of the
same type. In C#, no access to private variables is allowed outside the class definition
and its current instance. This is illustrated in the following Java class definition:

class MyPrivate

{

private int privateVar = 5;

public void ToString() {

System.out.println(privateVar);

}

public MyPrivate(int InitialVar){

privateVar = InitialVar;

}

public int getVar() {

return privateVar;

}

public boolean CompareVar(MyPrivate mp){

return this.privateVar == mp.privateVar;

}

}

C h a p t e r 4 : C # L a n g u a g e C o m p a r i s o n s 1 3 5

1 3 6 C # D e v e l o p e r ' s H e a d s t a r t

The CompareVar() method of the MyPrivate class uses another instance of
MyPrivate to verify if the objects’ private variables are the same. An attempt to do
this same operation in C# will be rejected by the compiler.

Delegates and Events
C# provides built-in delegates and events. Java uses interfaces and inner class
definitions to achieve a similar result. C# delegates, by their nature, support a
single-method call, while interfaces require an all or nothing approach. All methods
of an interface must be implemented. For example, in the Java AWT, a class can
implement the MouseListener interface to handle mouse events. Even if you only
care about one of the events, however, you’re obligated by the interface contract to
implement all five of the methods declared by the MouseListener interface, even if
they do nothing. This is demonstrated in the following code sample that implements
a simple Java applet, which responds to mouse events by displaying a message
wherever the mouse button was clicked.

import java.applet.*;

import java.awt.*;

import java.awt.event.*;

public class MouseTest extends Applet implements MouseListener {

private int mouseX;

private int mouseY;

public void init() {

addMouseListener(this);

}

public void paint(Graphics g) {

g.drawString("moused!", mouseX, mouseY);

}

public void mousePressed(MouseEvent event) {

mouseX = event.getX();

mouseY = event.getY();

repaint();

}

public void mouseClicked(MouseEvent event) {}

public void mouseReleased(MouseEvent event) {}

public void mouseEntered(MouseEvent event) {}

public void mouseExited(MouseEvent event) {}

}

The init() event, which is the first one called by the Java runtime, adds the
current listener, while the mousePressed() method implements the handler for that
event. Notice the other four mouse-handler routines that must be declared to satisfy
the interface contract.

A better approach than directly implementing interfaces for this would be to use
adapter classes. Adapter classes are base classes that implement the defined interface
and are generally provided by the server. The client derives a new inner class from
the adapter class to avoid having to explicitly implement all the events’ interfaces.
In the case of MouseEvents, the adapter class is MouseAdapter and it includes
virtual methods for each of the mouse events. You then override only the methods
you’re interested in. This is a much cleaner approach, but whether it’s as clean as
the C# delegates is debatable. At a minimum, this approach requires the server
class to provide the adaptors, as well as the interface. The following shows the
adapter-based implementation:

import java.applet.*;

import java.awt.*;

import java.awt.event.*;

public class MouseTestA extends Applet {

private int mouseX;

private int mouseY;

public void init() {

addMouseListener(new MyMouseAdapter());

}

public void paint(Graphics g) {

g.drawString("moused!", mouseX, mouseY);

}

class MyMouseAdapter extends MouseAdapter {

public void mousePressed(MouseEvent event) {

mouseX = event.getX();

mouseY = event.getY();

repaint();

}

}

}

C h a p t e r 4 : C # L a n g u a g e C o m p a r i s o n s 1 3 7

Generally speaking, if the server requires multiple methods—something beyond
a simple method call—or if the server expects or requires multiple methods, then an
interface should be used, even in C#. In the case of the MouseListener, you become
registered for five different events by adding one listener. If the server only needs
one method call and expects many clients, however, then interfaces can add needless
overhead.

Another point worthy of noting is that the C# delegate and C# (.NET) multicast
delegate are already built to handle invoking the delegates. Using interfaces, a server
needs to provide its own invocation code, though implementing a collection of
connected objects supporting the interface, and calling the connected objects at the
appropriate time isn’t that big a deal.

Passing Parameters by Reference
Java method parameters can only be passed by value. Because all Java types, except
its primitive types, are derived from the base object type, this is a non-issue, except
for when a method would like to change the value of a primitive type or it would
like to change an object reference (point an object reference variable at a different
object). When that situation occurs, the client must manually “box” the value in an
object. One easy way to do this is by using an array. The downside is, for certain
applications, this can cause a significant performance hit. As already discussed, in
C#, an integer can be passed by reference directly with no boxing required.

Properties
C# includes native support for properties, Java doesn’t. In Java, a consumer of the
class has additional get/set pairs of methods to call, while the consumer of the C#
class simply uses the property as if it were a field. So, if you have a boolean property,
getBooleanProperty() and setBooleanProperty() methods are needed. (Because this
is boolean, the get access methods might be written as is BooleanProperty() instead.)

On the surface, you might wonder what the big deal is. While properties in C#
aren’t world-changing, they are another example of where things are made explicit
in C#. The metadata for the class clearly spells out what the purpose is of a given
field, making it easier to consume. Imagine a class with ten properties. In C#, the
documentation for the class definition lists the ten properties. In Java, the class
definition lists 20 methods, one for each get and set method on the class. What’s
left to naming convention and style in Java is enforced by the compiler in C#.

Enumerations
Java doesn’t directly support enumerations, though enumerations can be simulated
using constant fields defined in a class definition or on an interface. In contrast,

1 3 8 C # D e v e l o p e r ' s H e a d s t a r t

C h a p t e r 4 : C # L a n g u a g e C o m p a r i s o n s 1 3 9

the C# enumerated type allows for tighter type checking, type consumption by
editors (intelli-sense), and better readability. Any good class definition includes
appropriate enumerations for method parameters because this aids the productivity
of users of the class. The enumerations in C# are easier to document and the intention
is clear. With Java, you need at least to pause for a second and consider the intention
of the class. To be fair, this last point could be overcome within a project by following
a decent naming convention, but there’s no guarantee other third parties won’t come
up with their own convention, reducing the usefulness of the nameing convention in
the first place.

If you rewrite your simple enumeration from the Language Overview section in
Java, you need to define a class (or an interface) and declare constants using the
final keyword. The code would look like this:

class TheWays {

public final static int North = 1;

public final static int South = 2;

public final static int East = 3;

public final static int West = 4;

public final static int ToSanJose = West;

}

class enums {

public static void main (String args[]) {

System.out.println(

"The way to san jose is " + TheWays.ToSanJose);

}

}

This program yields the output as follows:

The way to san jose is 4

So, the code isn’t as straightforward, is less descriptive in terms of the metadata,
and yields an integer result, instead of a string result when using default output. As
was shown in the C# enumeration sample in the Language Overview section, the
metadata carries the enumeration text, so when you execute the corresponding C#
code, you get a string result.

Console.WriteLine("The way is {0}", way);

This sample produces the following results:

The way is West.

1 4 0 C # D e v e l o p e r ' s H e a d s t a r t

C# Unsafe Mode
Java has no such thing as “unsafe mode” or an “address of” operator. So, such things
as direct memory manipulations aren’t possible in native Java. To achieve the same
functionality requires you go outside the environment with Java Native Interfaces
(JNI). Unsafe mode defeats some of the purpose of what Java is about, so it’s not
surprising it isn’t supported. However, lack of an unsafe mode also rules out Java
as a development platform for when it is required.

Indexers
Java doesn’t have any complement to C# indexers. As described in the Language
Overview, indexers provide array-like access to a class. This could be considered
a relatively minor inconvenience because the Java code to replace indexers would
simply be to add explicit indexing methods.

Specifying Thrown Exceptions
Both C# and Java support the try, catch, and finally approach for handling errors
and both support user-defined exceptions and throwing exceptions. The difference
comes into play where C# enables you to throw an exception from anywhere without
specifying it ahead of time. Java requires any non-runtime exceptions to be thrown
by a method, or any method called by the method, to be declared in the method header.

class MyErrorProneClass throws ThisException, ThatException {

try {

}

catch {

}

finally {

}

}

At first, this may seem unnecessarily harsh on the programmer because it seems
to require the help of a fortune-teller for many cases. Remember, the methods called
in the try block also have to publish which errors they will be throwing. If the method
implementation doesn’t catch them, it will be throwing them even if it doesn’t do so
explicitly. Having this extra information in the metadata of the class is helpful, but
it’s debatable if this is worth the extra effort. This doesn’t make handling exceptions
easier and, in some cases, it may lead programmers away from implementing them.

Arrays
In C#, arrays may be rectangular or jagged, while in Java, all multidimensioned
arrays are jagged. Rectangular arrays can be more efficiently accessed because a
member can be looked up directly using a simple calculation. With a jagged array,
a separate lookup is required for each dimension of the array.

Interfaces
Both Java and C# support the concept of an interface. A few differences worth
noting are in their definition and use, however. C# doesn’t allow type definitions
in interfaces, while a Java interface definition can include constant type data. In
C#, you can implement explicit (fully qualified) interface methods. This technique
can be used if duplicate methods are found on multiple interfaces or if one wishes
to hide the implementation of an interface from public use.

The switch Statement
In Java, the switch statement can only be controlled by an integer, while C# supports
an integral or string expression. In addition, the C# switch statement prevents fall
through from case to case. If more than one case is appropriate, a goto is required.

The foreach Statement
C# includes the foreach statement for quick and easy iterating over collections or,
said another way, any object that supports the IEnumerable interface. In Java,
collection iteration must be done either with a for loop or a while construct.

C h a p t e r 4 : C # L a n g u a g e C o m p a r i s o n s 1 4 1

This page intentionally left blank.

CHAPTER

5
Working Within the

Bounds of C#

143

IN THIS CHAPTER:

Deterministic Finalization

Multiple Inheritance

Macros

Templates

Source Code Security

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

Despite the power of C# and the careful attention its engineers paid in
designing a language with a robust set of features, alert readers will have
noticed it isn’t perfect, and C# has some language features missing. In

this chapter, we discuss several items that aren’t part of the language and yet are
considered “features” in other languages.

In reading the following discussions, readers shouldn’t expect to find any
silver-bullet solutions that have absolutely no cost or drawback. This chapter
discusses the shortcomings and proposes possible workarounds, when available.
None of the solutions are perfect, however. Perhaps knowing the C# engineers
neglected to include the features directly indicates significant caveats existed.
That said, hopefully, a greater understanding of the issues will enable you to better
leverage the language to your advantage, even in those areas where it falls short of
meeting your expectations.

Before we begin examining each item, let’s consider briefly that, for some, a
so-called shortcoming is actually a feature. For example, some developers believe
multiple-inheritance is actually a bad characteristic to support in a language because
of the potential that it could be abused. For these readers, there’s little point in
discussing workarounds for features they believe shouldn’t be there in the first place.
For the most part, however, the features missing from C# are found in C++. And,
because C# is designed as the language of choice for C++ programmers who want
to write managed code, at least discussing possible solutions that can be used in
addressing the C# shortcomings seems important.

Deterministic Finalization
The first feature lacking from C# to consider is deterministic finalization. As covered
in Chapter 4, deterministic finalization is generally understood as the calling of any
finalization code immediately before all references to it have been removed. In the
context of our discussion here, deterministic finalization is the action of calling a
class’s “clean-up” code automatically, deterministically, and reliably.

� Automatically: For finalization to be automatic, programmers shouldn’t have to
make calls explicitly to execute finalization code. For example, programmers
shouldn’t have to call the destructor method explicitly on a class. With .NET,

1 4 4 C # D e v e l o p e r ' s H e a d s t a r t

the garbage collector automatically calls destructor, so “automatically” is
supported in .NET.

� Deterministically: For finalization to occur deterministically, it needs to
occur at a specific time in the code execution sequence. Looking at a block
of code and knowing specifically between what two portions of code
finalization will occur should be possible. In the managed environment,
this isn’t the case, however. All that’s known is finalization code will run
sometime after the class is no longer referenced. Furthermore, the order
in which the finalization code will be called isn’t known. Given class A
contains class B, no guarantee exists that finalization code in class B will
be called before finalization code in class A (or vice versa). To achieve
deterministic finalization in .NET, a programmer needs to make a call
explicitly to the finalization code.

NOTE

Deterministic finalization means determining at compile time the specific location in the code at
which finalization will occur.

� Reliably: For finalization to be reliable, it should “always” be called.
Given the algorithm of the garbage collector, as described in Chapter 3,
we can assume the CLR will call all objects that have Finalize() methods
because they’ll be added to the freachable queue before the garbage
collector cleans them up. This makes the finalization reasonably
reliable, (only “reasonably” reliable because it isn’t called in the event
of unhandled exceptions, computer crashes, significant natural disasters,
and that sort of thing).

The .NET environment essentially supports two of the three criteria for
deterministic finalization: Automatically and Reliably.

To understand this a little more fully, consider deterministic finalization in C++ or
Visual Basic 6.0 (VB 6.0). Of these two, Visual Basic is the one that fully supports
automatic finalization. C++ only natively supports automatic finalization on classes
that are allocated on the stack. Heap allocated classes require a specific call to delete.
Fortunately, in the C++ case, wrappers can be written (usually using templates) that

C h a p t e r 5 : W o r k i n g W i t h i n t h e B o u n d s o f C # 1 4 5

1 4 6 C # D e v e l o p e r ' s H e a d s t a r t

automatically invoke the calls to delete. In both languages, the finalization is
deterministic. Finalization occurs at the instance a stack-allocated variable goes
out of scope. Last, in both languages, finalization is reasonably reliable. Tearing
out the processor or not handling an exception skirts the calling of finalization but,
presumably, these are rare occasions.

Note, in our discussions of deterministic finalization, we are discussing resource
cleanup, rather than memory cleanup. Given the mechanics of the .NET garbage
collection algorithm, we generally do not need to worry about the specifics of
memory management. The garbage collector uses whatever memory is available on
the system and appropriately reduces its use as other applications start and take up
memory resources. In other words, the garbage collector uses a system’s memory to
its full capacity and automatically adjusts as memory capacity changes.

Rather than memory per se, what deterministic finalization is concerned with (at
least in the context of this discussion) are the expensive resources a class may have
accumulated during its lifetime. Resource cleanup is generally more time-sensitive
than memory cleanup, hence, the emphasis on deterministic finalization. One
example of an expensive resource that requires cleanup could be a shared log file.
If the file was opened for exclusive access, then no other applications could access
the file until the resource was released. A second example could be a mutex or
semaphore that prevents concurrent access to a section of code. It’s critical that
the semaphore be released immediately following the section of code on which
synchronization is required. If not, the application runs less efficiently. This is
especially important for locks on database resources, such as tables and records.
In general, finalization code is concerned with cleaning up expensive resources
or resources that become expensive if held beyond the time required.

Releasing Resources Explicitly
The simplest method for implementing deterministic finalization in the .NET
framework is simply to clean up resources manually. This method makes the most
sense when the allocation of resources can occur within the same function as the
deallocation of those resources. For example, consider the Monitor class, which is
the .NET version of a semaphore. It’s important for every call to Monitor.Enter()
to be balanced with a call to Monitor.Exit(). Because Monitor is generally used to
provide synchronization to a section of code within one function, it’s relatively easy

to maintain the balance between Enter() and Exit() calls. Programmers simply
form a habit of always coding the Exit() call at the same time the Enter() call is
coded in the same manner that they tend to pair up curly braces. By explicitly calling
Exit(), a programmer is adding deterministic finalization.

Although the explicit release of resources by calling Exit() is deterministic,
unfortunately, manually making the call (by definition) isn’t automatic. Furthermore,
to make the call reliable, a try-catch-finally block should surround the entire section
of code from the Enter() to the Exit() so, even if an exception occurs, the Exit() is
still called. To help out in writing the try-catch-finally block, C# provides the special
lock syntax.

Variable Declaration with the using Keyword
To deterministically, reliably, and “pseudoautomatically” free up local function
variables, C# provides a special syntax as the following shows.

using (TempFile tempFile = new tempFile ())

{

// Do something

...

}

C# takes the using keyword and automatically generates equivalent IL code that
essentially mimics the following C# code:

TempFile tempFile = new TempFile();

try {

// Do something

...

}

finally {

if (tempFile != null) ((IDisposable)tempFile).Dispose();

}

What does the using statement really offer? At its core, the using statement
simply reduces the amount of typing you have to do. Essentially, it serves as a
glorified macro, converting your code so it’s deterministically and reliably finalized:
deterministically because finalization code (Dispose()) is called at a known time,
and reliably because it’s called from inside a finally block.

C h a p t e r 5 : W o r k i n g W i t h i n t h e B o u n d s o f C # 1 4 7

A few caveats do exist, though. First, nothing prevents you from passing a
reference to the class outside the scope of the function, thereby essentially setting
up a situation in which Dispose() is called before all references to the variable are
removed. Second, because nothing is enforcing the use of the using keyword when
declaring your class, developers could easily neglect to call Dispose(). This is why
the term “pseudoautomatically” was previously used. If a programmer reads the
documentation and remembers to declare a class variable with the using keyword
(or writes the try-catch block manually), then deterministic finalization is
automatic. Neglecting the keyword, however, results in a nondeterministic call to
any finalization code (assuming the destructor method was, indeed, implemented in
the class). One last thing to note about the using keyword is this: variables declared
within the resource acquisition section of the using statement (the section inside the
using parentheses) are read only.

NOTE

To summarize, the using keyword provides a means of automatically generating a call to a
Dispose() method before a local function variable goes out of scope.

Notice that for the using syntax to compile, your class (TempFile() in the
following example) must implement the System.IDisposable interface. This interface
has only one method, Dispose(), which takes no parameters and returns a void.
(System.IDisposable wasn’t defined until Beta 2.) In general, always implementing
the System.IDisposable interface on any classes that require resource cleanup is
considered good practice. This provides a standard means for recognizing when
resource management is required. The obvious implication is if you use a class that
supports the System.IDisposable interface, you must be sure to call its Dispose()
method (or use the using keyword) as soon as the class is no longer needed. Another
good practice is to stop the garbage collector from calling the destructor method
because it’s assumed any code the finalize method would execute has already been
run by the Dispose() method. To prevent the destructor from being called again,
use the System.GC.SuppressFinalize() method. By removing the call to the
destructor method, you reduce the overhead involved with adding another class
to the freachable queue.

1 4 8 C # D e v e l o p e r ' s H e a d s t a r t

NOTE

Developers should implement the System.IDisposable interface on all classes where they want
deterministic resource cleanup to be performed. Programmers who use a class that implements
the System.IDisposable interface should call its Dispose() method as soon as the classes’
resources are no longer needed. Or, the class should be declared with the using keyword,
assuming no additional references are being created outside the scope of the using keyword.

The following code shows a sample class that implements the System.IDisposable
interface.

namespace CSharpHeadStart

{

using System;

using System.IO;

public class FileStreamResource : FileStream, IDisposable

{

...

// Just in case Dispose is not called explicitly

// by the client.

~ FileStreamResource()

{

Dispose();

}

// ***********

// IDisposable

public void Dispose()

{

this.Close();

// Turn off the call to Finalize() by the GC.

GC.SuppressFinalize(this);

// Call base.Dispose() if implemented.

}

...

}

...

}

C h a p t e r 5 : W o r k i n g W i t h i n t h e B o u n d s o f C # 1 4 9

1 5 0 C # D e v e l o p e r ' s H e a d s t a r t

Notice, despite the fact that the IDisposable interface has been implemented, a
destructor declaration still exists (which is compiled to a Finalize() method in IL).
This provides a backup for calling Dispose() if a client neglects to do so explicitly.

Reference Counting
If the using keyword provides a method for generating code to call the Dispose()
method on a local function variable, what can programmers do for the case in which
variables are passed beyond the scope of a function call and end up having multiple
references? If multiple references are created, how can it be determined when to
release any expensive resources held by the referenced object?

In these cases, you’re required to fall back on the same techniques that were
such an integral part of COM. Essentially, you need to add some type of reference
counting. The code follows:

namespace CSharpHeadStart.ReferenceCounting

{

public interface IRefCounted

{

void AddRef();

void Release();

}

// More stuff to be defined here later

...

}

namespace CSharpHeadStart

{

using System;

using System.IO;

using ReferenceCounting;

using System.Diagnostics;

public class FileStreamRefCounted :

FileStream, IDisposable, IRefCounted

{

...

// Just in case Dispose is not called explicitly

// by the client.

~FileStreamRefCounted()

C h a p t e r 5 : W o r k i n g W i t h i n t h e B o u n d s o f C # 1 5 1

{

Dispose();

}

// ***********

// IDisposable

public void Dispose()

{

this.Close();

CheckReferenceCount();

// Turn off the call to Finalize() by the GC.

GC. SuppressFinalize(this);

// Call base.Dispose() if implemented.

}

// ***********

// IRefCounted

// Initialize to one so AddRef() call not required

// upon instantiation of class.

protected int referenceCount = 1;

public void AddRef()

{

referenceCount++;

}

public void Release()

{

referenceCount--;

if(referenceCount == 0)

{

Dispose();

}

return;

}

[Conditional("DEBUG")]

protected virtual void CheckReferenceCount()

{

System.Diagnostics.Debug.Assert((referenceCount == 0),

"Reference handling was not performed correctly for "

+ ToString(),

"Reference count is " + referenceCount.ToString());

}

}

}

The first thing to note in the previous code listing is FileStreamRefCounted now
implements one more interface, IRefCounted. IRefCounted declares the reference
counting methods to be placed on classes that require resource cleanup via reference
counting. (At press time, there was no standard IRefCounted interface.) Let’s look
at IRefCounted’s implementation.

The first thing to note is the reference counting variable, referenceCount,
is initialized to one. When instantiated, it’s assumed the class will have one
reference, so this is set automatically. Although calling AddRef() from inside the
FileStreamRefCounted constructors is possible, so many constructors must be
overridden, this is impractical. Instead, the reference-counting field is initialized
automatically. Setting the reference count to one at instantiation follows the
model established by COM; in other words, COM’s CoCreateInstance() or
CoCreateInstanceEx() returns an object whose reference count is one. This also
forces programmers into an awareness of reference counting in debug builds because
if Release() isn’t called at least once, an assert occurs.

Next, comes the implementation for AddRef() and Release(). AddRef()
bumps the reference count, while Release() decrements it. In the Release()
function, Dispose() is called when the reference count reaches 0. Neither AddRef()
nor Release() use synchronization. The general philosophy in .NET classes is
only to include synchronization code when required and, instead, to rely on
instance variables that aren’t shared among multiple requests. This is because
synchronization reduces performance, which is needless when only a single thread
accesses the class. To convert the code to being thread safe, use the Interlocked
class as shown in the following:

public void AddRef()

{

Interlocked.Increment(ref referenceCount);

}

public void Release()

{

if(Interlocked.Decrement(ref referenceCount) == 0)

{

Dispose();

}

}

The last significant aspect of the reference count implementation is that
CheckReferenceCount() is called if DEBUG is defined to help insure reference
counting is used correctly and the object always ends with a reference count of zero.

1 5 2 C # D e v e l o p e r ' s H e a d s t a r t

What are the advantages and disadvantages of reference counting? First, the
disadvantages: for reference counting to work, all clients are required to make and
balance calls to AddRef() and Release() each time new references are created or
destroyed. Unfortunately, nothing is enforcing that these calls are made, and the only
indication they should be called (aside from any documentation that may accompany
the class) is the implementation of the IRefCounted (or equivalent) interface and
the existence of the two reference-counting methods on the class. Reference counting
requires careful attention to make sure every call to AddRef() has a corresponding
Release() call. Inevitably, at times, one or the other of these calls will be missing and
resources will be released prematurely or not until the garbage collector runs.

NOTE

Reference counting requires careful attention to make sure every call to AddRef() has a
corresponding Release() call.

Although this is probably negligible for in-process calls, another issue with
reference counting is it could significantly decrease performance when calls are
required to cross process or network boundaries. The same issue existed in COM,
however, and the abundance of COM applications both distributed and local,
indicate performance is reasonable.

.NET Finalization
Before we leave the topic of deterministic finalization, it’s worth pointing out that
even though methods exist to introduce deterministic finalization into your classes, the
best method is to avoid requiring it in the first place. In other words, before you begin
trying all types of antics to force deterministic finalization into .NET (as I, Mark, did)
the first solution is to accept the fact that garbage collection, even garbage collection
without deterministic finalization, is good and preferable in the vast majority of
cases. This is sometimes more difficult for C++ programmers to accept because of
the extensive use of destructors within their C++ classes. However, you must realize
that much of the code within C++ destructors was required to deallocate resources
(balancing new with delete) and, without destructors, allocated memory would
inevitably result in memory leaks. In contrast, .NET automatically deallocates the
memory resources for you. You may not know exactly when this will occur, but you
do know it will occur. Furthermore, given a destructor function, .NET automatically
cleans up any resources you identify in the destructor function.

C h a p t e r 5 : W o r k i n g W i t h i n t h e B o u n d s o f C # 1 5 3

NOTE

Garbage collection, even garbage collection without deterministic finalization, is good and
preferable to manual memory management in the vast majority of cases.

In some sense, it could be argued that deterministic destruction is, in fact, too
restrictive because it forces cleanup at a particular time, even if at that time memory
is abundant and processing time is scarce. In other words, .NET memory management
can be more efficient than its C++ counterpart in some circumstances. The bottom
line is programmers switching to .NET are well advised to accept the fact that
deterministic finalization isn’t natively present in the managed world and not to
worry about the theoretical cases where it could possibly be required until they
encounter a real situation where they need it. Although some tradeoffs exist
in having automatic memory management, the benefits outweigh the costs in the
majority of applications. This isn’t a declaration that the .NET garbage collection
will solve all the problems in the world (including world hunger), however. It’s
fully recognized that, at times, you require some type of deterministic finalization;
otherwise, what would have been the point of this entire section?

NOTE

The bottom line is programmers switching to .NET are well advised to accept the fact that
deterministic finalization isn’t natively present in the managed world and not to worry about the
cases where it could possibly be required until they encounter a real situation where they need it.

NOTE

Although some tradeoffs exist to having automatic memory management, the benefits outweigh
the costs in the majority of applications.

Multiple Inheritance
C# doesn’t support multiple inheritance because the feature doesn’t exist in the CLR.
This becomes obvious when you realize Managed C++ doesn’t include the feature
either. Before we delve into the details of how to overcome the fact that there’s no
multiple inheritance, let’s consider the seriousness of the problem.

ATL was essentially developed for COM programmers, so they didn’t have to
hand code implementation of all the interfaces required by a basic component.
Toward this end, multiple inheritance was key because each interface a component
was required to support was added to the list of classes from which a component was

1 5 4 C # D e v e l o p e r ' s H e a d s t a r t

derived. More specifically, an implementation class for each of the required interfaces
was added to the list of classes the component inherited. Hence, multiple inheritance
was integral to the success of ATL.

In C#, the situation has changed significantly because much of the support for
standard interfaces in COM has been built into a class’s most basic functionality. For
example, error handling, class info, and events don’t require any special interfaces at
all. Even such features as persistence become trivial in .NET because of attributes
(see SerializableAttribute in the documentation). The result is this: for many of the
situations in ATL where multiple inheritance was crucial, it’s no longer required in
C# and, in fact, no inheritance is required. This doesn’t eliminate all scenarios, but it
certainly reduces them significantly.

C h a p t e r 5 : W o r k i n g W i t h i n t h e B o u n d s o f C # 1 5 5

ATLs Multiple Inheritance In-depth
To emphasize the need for multiple inheritance in ATL, lets consider some
of the ATL details when multiple inheritance is used. For example, a COM
component must support the IUnknown interface (by definition) and to do this
requires adding CComObjectRootEx<> as a parent class to the component
class definition. This provided the component with the capability to handle
QueryInterface() and support reference counting. Next, if the component is
to handle calls from scripting languages, support for the IDispatch interface
is added by deriving from IDispatchImpl. As if this isn’t enough, most
components need to support IErrorInfo, IProvideClassInfo, IPersist, and/or
IConnectionPointContainer at some point, and each of these has its own
implementation classes to be derived from. The fact is, much of the power of
ATL is because of multiple inheritance. To support a new interface requires
simply adding the implementation class as a parent to the component. This
works, not only for standard interfaces for which Microsoft provides
implementation classes, but also for any custom interfaces developers want
to include in multiple components. In other words, if you need to support some
custom interface on multiple components, you can write your own class that
implements the interface.

1 5 6 C # D e v e l o p e r ' s H e a d s t a r t

Containment
The first solution to implementing multiple inheritance is to use containment. Let’s
consider an example. In the previous section, you learned that to implement some
type of deterministic destruction when multiple references are created, you need to
include two reference-counting methods. However, if you had to rewrite the same
method over and over again every time you encounter a scenario where reference
counting was required, this would be ridiculous. Therefore, in our example, we’ll
create an RefCountedImpl class designed to implement reference counting. Because
we’re deriving our class from System.FileStream, however, we cannot also inherit
RefCountedImpl. Instead, we use containment as the following shows. To begin,
let’s write the RefCountedImpl class, so it can generically handle reference
counting. A listing of the code follows:

namespace CSharpHeadStart.ReferenceCounting

{

using System.Threading;

using System;

using System.Diagnostics;

public interface IRefCounted

{

void AddRef();

void Release();

}

public sealed class RefCountedImpl : IRefCounted

{

private long referenceCount = 1;

private IDisposable refCountObject;

#if DEBUG

~RefCountedImpl()

{

CheckReferenceCount();

}

private void CheckReferenceCount()

{

System.Diagnostics.Debug.Assert((referenceCount == 0),

"Reference handling was not performed correctly for "

+ refCountObject.ToString(),

"Reference count is " + referenceCount.ToString());

}

#endif //DEBUG

public RefCountedImpl(IDisposable ReferenceCountedObject)

{

refCountObject = ReferenceCountedObject;

}

public void AddRef()

{

Interlocked.Increment(ref referenceCount);

}

public void Release()

{

if(Interlocked.Decrement(ref referenceCount) == 0)

{

refCountObject.Dispose();

}

return;

}

}

This essentially factors out all the reference-counting code from the
FileStreamRefCounted class we first wrote in the previous reference counting
section. In addition, it includes an IDisposable variable whose Dispose() method
will be called when the reference count drops to zero. A requirement is an
IDisposable object must be passed to the constructor. Note also, the class is
sealed and CheckReferenceCount() is only called when DEBUG is defined
(cse.exe /D:DEBUG …) to maximize efficiency.

Now let’s look at the FileStreamRefCounted class declaration:

namespace CSharpHeadStart

{

using System;

using System.IO;

using ReferenceCounting;

using System.Diagnostics;

C h a p t e r 5 : W o r k i n g W i t h i n t h e B o u n d s o f C # 1 5 7

1 5 8 C # D e v e l o p e r ' s H e a d s t a r t

public class FileStreamRefCounted : FileStream, IDisposable

{

public FileStreamRefCounted(string path, FileMode mode):

base(path, mode)

{

RC = new IRefCountedImpl(this);

}

// Override other FileStream constructors here.

// Just in case Dispose is not called explicitly

// by the client.

~FileStreamRefCounted()

{

Dispose();

}

// ***********

// IDisposable

public void Dispose()

{

this.Close();

// Turn off the call to Finalize() by the GC.

GC.SuppressFinalize(this);

// Call base.Dispose() if implemented.

}

public RefCountedImpl RC;

}

The key line is the last line. As you can see, containment essentially means
adding what would normally be the parent class as a property to the containing
class. Calling the reference counting methods requires the additional “RC” for the
variable name, as in:

FileStreamRefCounted filestream;

...

filestream.RC.Release();

What does containment accomplish? First, it saves us from having to cut-and-paste
the implementation code required for reference counting from one reference-counted
class to another. This is important because now, if we need to change the
RefCountedImpl class for some reason, there’s only one place to make the change.

Avoiding duplicate code is arguably one of the most important features that multiple
inheritance offers and containment offers a reasonable solution if this is all you need
to accomplish.

What is the cost of using containment in place of multiple inheritance, however?
As already pointed out, users of the class need to include the variable of the contained
class whenever calling one of its methods or properties. This makes the methods and
properties of the contained class a little more cumbersome to find but other than that,
it is merely a slight inconvenience. More importantly, however, containment results
in the loss of direct substitutability for the contained class. Substitutability is the
characteristic of being able to pass the derived class (FileStreamRefCounted) as
a parameter to any method or property that takes a data type of the parent class
(or interface). In the example previous, FileStreamRefCounted cannot serve as a
substitute to IRefCounted (or RefCountedImpl). For example, given the partial
source for a new weak reference class, as the following shows, the constructor couldn’t
be passed to the FileStreamRefCounted object directly.

class WeakReferenceRefCounted : WeakReference

{

WeakReferenceRefCounted(IRefCounted Target) :

base(Target)

{

Target.AddRef()

}

...

}

...

{

FileStreamRefCounted filestream;

WeakReferenceRefCounted(filestream); // Error!!

...

}

Instead, FileStreamRefCounted.RC must be passed. A programmer could
easily miss this, however, if the method used polymorphism such that
System.Object was also supported because the program would still compile.
In other words, if a WeakReferenceRefCounted(System.Object) constructor
was provided, the previous code would compile, but would fail at run time. If
substitutability is required, then an alternate solution is called for.

C h a p t e r 5 : W o r k i n g W i t h i n t h e B o u n d s o f C # 1 5 9

Interface Implementation
If substitutability is a requirement, then the alternative is to use multiple inheritance
at the interface level and to code all the methods on the interface by hand. An
implementation class (such as RefCountedImpl) is still helpful because it cuts down
on the amount of cut-and-paste involved. Unlike the pure containment, however, the
solution is more complicated than simply adding a field for the implementation
class. A duplicate of all the methods and properties must be inserted into the class.
Each of these methods would then have to call the methods of the implementation
classes. Following is an implementation of FileStreamRefCounted using interface
implementation. RefCountedImpl needs no changes.

namespace CSharpHeadStart

{

using System;

using System.IO;

using ReferenceCounting;

using System.Diagnostics;

public class FileStreamRefCounted :

FileStream, IDisposable, IRefCounted

{

public FileStreamRefCounted(string Path, FileMode mode):

base(Path, mode)

{

RC = new IRefCountedImpl(this);

}

// Override FileStream constructors here.

// Just in case Dispose is not called explicitly

// by the client.

~FileStreamRefCounted()

{

Dispose();

}

// ***********

// IDisposable

public void Dispose()

{

this.Close();

// Turn off the call to Finalize() by the GC.

GC.SuppressFinalize(this);

1 6 0 C # D e v e l o p e r ' s H e a d s t a r t

// Call base.Dispose() if implemented.

}

public RefCountedImpl RC;

// ***********

// IRefCounted

public void AddRef()

{

RC.AddRef();

}

public void Release()

{

RC.Release();

}

}

This implementation of FileStreamRefCounted essentially has two differences.
First, FileStreamRefCounted is derived from IRefCounted. This is what enables
the substitutability. Given this inheritance, it’s possible to use

WeakReferenceRefCounting wkrf =

new WeakReferenceRefCounting(filestream);

in place of

WeakReferenceRefCounting wkrf =

new WeakReferenceRefCounting(filestream.RC);

Because IRefCounted is added to the inheritance tree, however, the
implementation also needs to be added. This is why the AddRef() and Release()
methods have been added. Notice that what all these methods do is call the
contained RefCountedImpl class stored in RC.

...

RC.AddRef();

...

RC.Release();

...

With interface inheritance, our class is a super set of the containment method
previously mentioned. Interface inheritance provides the substitutability we were
lacking in pure containment, however. What are the disadvantages? Essentially, that
the methods and functions of implemented interface need to be added to the class.
This is trivial when only two simple methods like those of IRefCounted exist, but

C h a p t e r 5 : W o r k i n g W i t h i n t h e B o u n d s o f C # 1 6 1

more complicated interfaces could be troublesome. No doubt, once you have to
implement five different methods (if not before), you’ll resort to cutting-and-pasting
the implementation code from one class to another. Furthermore, if a method in an
inherited interface was added or changed (not recommended practice because it
breaks the contract), then the method must be hand added or changed throughout
all classes that implement the interface. Fortunately, a compile error results, but,
nonetheless, the same change is required in multiple places. Solving this cut-and-paste
problem requires macros, which we consider next.

Macros
As you learned in the previous chapter, C# doesn’t support macros. A trivial
workaround to this problem is to use the C++ preprocessor to expand the macros
before running the C# compiler. To run only the C++ preprocessor, use the /P
option. To forcefully include particular files, namely files that contain your macro
definitions, use the /FI option. Finally, to compile the file as a CPP file, you also
need the /Tp option. For the sample we’ve been working with, the command would
be as follows:

cl.exe /P /Tp file.csm /FI RefCount.csm

Combining Macros with Interface Inheritance
The main problem with interface inheritance is the code required to implement
the interfaced essentially becomes a cut-and-paste from class to class. One way to
avoid this is to place all the code within a macro. In this scenario, you would add
REFCOUNTEDIMPL to the class and define REFCOUNTEDIMPL as follows:

#define IREFCOUNTEDIMPL \

public IRefCountedImpl RC; \

public void AddRef() \

{ \

RC.AddRef(); \

} \

public void Release() \

{ \

RC.Release(); \

}

1 6 2 C # D e v e l o p e r ' s H e a d s t a r t

This macro is inside RefCount.csm, where the CSM extension is added to
indicate this is a C# macro file. You will notice from the preceding cl.exe command
that this file is included in the compilation with the /FI option.

Given this macro file, improvising multiple inheritance essentially takes only
three steps:

1. You have to add the interface to the list of parent classes. In our example, this
involves adding IRefCounted (and IDisposable, if it isn’t already there).

2. You need to include the macro within the class definition. Here’s the final
FileStreamRefCounted class definition in File.csm. REFCOUNTEDIMPL
is all that’s added.

public class FileStreamRefCounted :
FileStream, IDisposable, IRefCounted

{

// Override FileStream constructors here.

// Just in case Dispose is not called explicitly
// by the client.
~FileStreamRefCounted()
{

Dispose();
}

// ***********
// IDisposable
public void Dispose()
{

this.Close();
// Turn off the call to Finalize() by the GC.
GC.SuppressFinalize(this);
// Call base.Dispose() if implemented.

}

// The macro below is used to pseudo implement multiple
// inheritance
REFCOUNTEDIMPL
...

}

3. You must add the additional compile step for executing the precompiler.

C h a p t e r 5 : W o r k i n g W i t h i n t h e B o u n d s o f C # 1 6 3

This last step can also be automated either via a make file, a batch file, or even a
Visual Studio solution. Included in the source code, you will find a make file that
can build the sample using macros automatically. Here is a listing of the file.

File.exe : File.i EntryPoint.cs

csc.exe /D:DEBUG /R:System.dll /out:File.exe File.i \

Refcount.cs EntryPoint.cs

File.i : File.csm RefCount.csm

cl.exe /P /Tp file.csm /FI Refcount.csm

Given the make file, you can execute the build as follows:

nmake /f makefile

If you use a Visual Studio solution in place of the make file, you need to create an
empty project that runs the precompile step, and then make your C# project dependent
on the precompile project.

Templates
As we observed back in Chapter 4, another one of the features lacking in C# is
templates. Unfortunately, the story for templates isn’t as good as it was for macros and
multiple inheritance (and these stories weren’t exactly great). Two solutions exist.

The first solution is to use managed C++, which provides you with a limited set of
template functionality. This is much more than is available with C#, however. It is
limited because the template class cannot derive from a managed type and cannot be
declared as a managed type. Essentially, you’re limited to containment when it
comes to a class template.

The second solution is to do without templates by using the System.Object. This
solution involves replacing whatever data type would be specified in the template
with System.Object. For example, consider the C++ template definition from
Chapter 4, shown again in the following:

template <class T, class U>

struct Pair

{

public Pair(T First, U Second)

{

this.First = First;

1 6 4 C # D e v e l o p e r ' s H e a d s t a r t

this.Second = Second;

}

public T First;

public U Second;

}

To implement a similar class in C#, where no templates exist, you need to use
System.Object in place of T and U. A listing of the code follows:

struct Pair

{

public Pair(System.Object First, System.Object Second)

{

this.First = First;

this.Second = Second;

}

public System.Object First;

public System.Object Second;

}

Or, you could code the class for the specific type you want, replacing T and U
with the hard-coded types you need. In this case, you must create an entirely new
class every time the pattern occurs, but for different data types. For example, if you
were trying to pair a Name string to a SSN class, first you would be required to
create a PairNameSSN class, whereas a Team class to Coach class pair would
require an entirely different class, PairTeamCoach.

In the first case (using System.Object), the code isn’t strongly typed such that it’s
possible to store an object of different types in the pair, even though this may not be
what is desirable. If you were trying to pair a Team class to a Coach class, this
would work, but there would be nothing to stop the programmer from placing the
Team class in the Second, rather than First property, or vice versa. Templates are
strongly typed such that this would be prevented (assuming the data types within the
pair were different).

Neither of the previous design options achieves the same functionality that
templates do, but they both present a reasonable workaround that C# programmers
must live with until Microsoft adds generics to the CLR.

Another, slightly subtler drawback exists to using System.Object, which is all
value types must be boxed when they are stored into the class. Later on, when it’s
time to remove the value types, an additional performance hit would be incurred to
unbox the value.

C h a p t e r 5 : W o r k i n g W i t h i n t h e B o u n d s o f C # 1 6 5

Source Code Security
The last item that deserves mention in this chapter concerns the security of your
code. Because IL is such an integral part of the .NET architecture, and because IL
code is so easily available via utilities such as ILDasm.exe, the barrier to preventing
users from stealing your source code by disassembling it is much smaller than it was
previously. Prior to .NET (and Java), disassembling code was certainly possible, but
the task was significantly more difficult than the one presented by IL code.

Some developers may not see this as much of a concern, but a few rather
hair-raising scenarios could occur. Consider, for example, the malevolent user who
disassembles your code, changes it to be malicious, and then redistributes the code.
This could seriously impact a user’s willingness to try the same application again.
Certainly, certificates help this, but they require users to pay attention and to
examine the certificates manually. Furthermore, authenticated certificates are
rarely included in shareware/freeware products because of the added cost.

Another area that presents concern is an increased risk of piracy. Let’s assume
some location within your code checks for a license or verifies the maximum
number of users of your distributed application hasn’t been reached. Because IL
code is so easy to disassemble and reassemble, what is to prevent a user from
disassembling the code and removing any license checks you may have? Nothing
is new about these possibilities in the .NET world; it’s simply significantly easier
to achieve now.

Complete solutions to this problem hadn’t fully developed at press time. The
most obvious solution would be to create some type of obfuscator that increases the
complexity involved in interpreting what code does. At this time, Microsoft only
claims it’s aware and concerned about the problem, but it hasn’t yet announced any
solutions. If this issue is of great concern to you (for example, if you work on writing a
messaging application for AOL and you don’t want Microsoft to figure out how your
application works), then the best solution is to write the portions of your application
that require a lower level of visibility using an unmanaged language. The only
alternative is to restrict your managed code to the server so that it is not accessible
to prying eyes.

1 6 6 C # D e v e l o p e r ' s H e a d s t a r t

CHAPTER

6
Integrating Legacy Code

with C#

167

IN THIS CHAPTER:

Integration Approaches

Calling COM Objects from C#

The COM Callable Wrapper, Calling .NET
Objects from COM

Data Marshalling

Platform Invocation Services, Calling
Unmanaged APIs from C#

Interoperability Through Managed C++

Migrating Code

Summary

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

C# and .NET are completely new platforms for development. However,
plenty of Windows-based code already exists in the world, and most
development staffs don’t have the luxury of pitching what they’ve done

and starting over. What this means is a critical feature of the .NET Framework is
the capability to interoperate with existing, unmanaged code. Clearly, far more
unmanaged code exists now than managed code. Any significant adoption of .NET
as a development platform isn’t practical without being able to easily integrate new
managed code and existing unmanaged code. Fortunately, Microsoft realizes this
and has provided a solid technical approach for integrating .NET with existing
unmanaged code. This chapter describes the technologies available in .NET for
integrating existing unmanaged code with .NET-managed code.

Integration Approaches
COM-based components are ubiquitous. In fact, most Windows-based services and
add-ons have provided COM interfaces, hence, it’s a given that existing COM-based
components need to be integrated into .NET-based applications. The goals of .NET’s
COM interoperability features are to provide 100 percent compatibility with existing
software. A standard COM client, for example, should have no idea it’s talking to a
.NET-managed object and a COM server should have no idea a .NET managed
object is the COM client. In addition, a COM server upgraded to run in .NET should
be capable of providing services to a COM client unchanged and, a client, upgraded
to .NET, shouldn’t be noticeable to a COM server.

One common integration scenario is an existing library of COM-based business
objects that need to be deployed to the Web. ASP.NET is a vastly improved
architecture for building and deploying Web-based applications and it can be
leveraged without requiring the business objects to be rewritten. As depicted
in Figure 6-1, the existing business objects can be used “as is” via the COM
interoperability provided by .NET, while your new Web app leverages the updated
services of ASP.NET.

Not only can existing COM be integrated easily into .NET, things work just as
easily in the other direction. For example, consider an existing n-tier client/server
application that uses Visual Basic (VB) as a front end. You want to start building
.NET-based services, but you can’t throw out the existing architecture and all the
code that goes with it to start writing everything in C# for .NET. You can, however,
start building new services that leverage the .NET Framework and expose them as
COM objects for easy integration into your existing front end as shown in Figure 6-2.

1 6 8 C # D e v e l o p e r ' s H e a d s t a r t

Finally, if you have C++-based business components, these components can
easily be added or accessed from your C++ application using Managed Extensions
for C++. Managed Extensions can also be used to build .NET wrappers for your
existing C++ classes to make them available to .NET-based applications. In fact, the
primary reason Managed Extensions exist is to integrate existing C++ code into the
managed world of .NET.

Calling COM Objects from C#
Having quickly reviewed some of the integration possibilities, we now delve into
some of the mechanics of COM interoperability. First, we discuss the details of
accessing COM components and then we look at interoperability using Managed
C++. This detailed review of COM interoperability begins by importing a simple
test COM component into .NET.

.NET supports both early binding (direct vtable calls) and late binding of
COM-based components. To early bind, a managed class wrapper must be
generated. If only IDispatch interfaces are available for the COM component, then
late binding is required. Late binding from C# code requires the use of the .NET

C h a p t e r 6 : I n t e g r a t i n g L e g a c y C o d e w i t h C # 1 6 9

Figure 6-1 ASP.NET hosting COM-based business objects

Figure 6-2 Unmanaged client using .NET managed objects

1 7 0 C # D e v e l o p e r ' s H e a d s t a r t

Reflection API. Remember from Chapter 4, VB.NET supports late binding natively.
Also, remember language interoperability is a key feature of the .NET platform, so
before you make a decision to implement Reflection API, consider using VB.NET
to provide the wrapper if late binding is required.

Our first sample was built using the ATL Component Wizard of Microsoft
Visual Studio 6.0. It represents nearly the simplest COM component that can be
built. The IDL for the simple sample component can be found in SampleSrv.idl
which is listed here:

import "oaidl.idl";

import "ocidl.idl";

[

object,

uuid(9169E993-023A-43B3-B24D-73E34E64A6AE),

dual,

helpstring("IFirst Interface"),

pointer_default(unique)

]

interface IFirst : IDispatch

{

[id(1), helpstring("method Message")] HRESULT Message();

};

[

uuid(654E0999-0110-4D29-BFCE-4E8872943ECF),

version(1.0),

helpstring("SampleSrv 1.0 Type Library")

]

library SAMPLESRVLib

{

importlib("stdole32.tlb");

importlib("stdole2.tlb");

[

uuid(B3A9788C-FE73-426B-B2B7-0EB9C910ABC9),

helpstring("First Class")

]

coclass First

{

C h a p t e r 6 : I n t e g r a t i n g L e g a c y C o d e w i t h C # 1 7 1

[default] interface IFirst;

};

};

Using the TLBIMP Utility
To use the SampleSrv COM component from C#, managed types are required. The
.NET SDK provides the TLBIMP.EXE (TLBIMP) utility to generate .NET proxy
classes and associated metadata for COM libraries. The proxy classes are then used
by the .NET runtime to build a managed wrapper, called the Runtime Callable
Wrapper (RCW). The RCW wraps the COM component, so it can be called from
managed code, just as if it was a .NET managed type.

The following command line generates a .NET assembly from the simple COM
component SampleSrv.dll.

tlbimp SampleSrv.dll /out:SampleSrvAsm.dll

Running ILDASM.EXE on the generated assembly shows exactly what TLBIMP
does with the component and also provides a good idea of what’s going on in the
RCW. The generated namespace is taken from the name of the assembly so, in
this case, it’s SampleSrvAsm. Within this namespace, a class and an interface have
been generated corresponding to the SampleSrv declared interface IFirst and the
coclass First.

If, for some reason, the default namespace name isn’t desirable, it can be
overridden with a specific custom attribute. Overriding the default name could be
appropriate if several related COM components are being imported, or if a naming
conflict needs to be avoided. The following line, placed into the IDL of the
SampleSrv library, gives it a namespace of Sample.Test instead of SampleSrvAsm
as shown in Figure 6-3.

custom(0F21F359-AB84-41e8-9A78-36D110E6D2F9, "Sample.Test")

TLBIMP also includes options to indicate or embed a key name into the
assembly. As with any assembly, a strong name can be supplied, so the .NET
security framework can be leveraged for this assembly and the .NET code can be
written to use it.

1 7 2 C # D e v e l o p e r ' s H e a d s t a r t

The Runtime Callable Wrapper
The RCW does just what its name implies: it provides a managed wrapper for COM
objects so that they can be called by .NET managed types. Once an assembly for the
COM library has been built, it’s easily accessed inside the .NET Framework, just as
if it were a standard assembly because of the efforts of the RCW. In fact, that’s what
the “outside” of the wrapper is—a .NET assembly. Inside the wrapper, COM objects
are instantiated and manipulated for the purposes of the .NET client (see Figure 6-4).

The following sample code (located in SampleClient.cs) shows a simple C#
program that uses our sample server. You won’t notice anything special about this
server. It uses the assembly by importing its namespace.

using Sample.Test;

class EntryPoint

{

public static void Main()

{

First f = new First();

f.Message();

}

}

That’s all there is to it. As you can see, the RCW insulates the .NET managed
world from the COM reference-counted world. The .NET clients shouldn’t notice

Figure 6-3 SampleSrvAsm.DLL as viewed by ILDASM

anything unusual or even that they’re using COM objects at all. The guts of the
required COM interaction, including reference counting as well as converting data
types, handling HRESULTs, return values, and wrapping connection points are all
taken care of by the RCW.

In addition, the RCW, and underlying .NET marshaller, provide numerous
standard type conversions. Most of these conversions are straightforward. The
following reviews a few of the trickier or indirect conversions.

The convenience of the RCW doesn’t come without a price. Every call from
managed to unmanaged code bears some overhead. However, critical attention has
been paid to performance of the RCW. Microsoft realizes the vast amount of
existing COM-based code out there and it isn’t enough just to make accessing it
from .NET easy; it also has to perform when it gets called from .NET. The RCW
is optimized so calls into COM provide minimal overhead (as few as ten machine
instructions in cases where no marshalling is required).

Method Return Values and HRESULTs
One area where the RCW does some extra work is with method return values and
HRESULTs. Notice, even though the Message() method on the previous First
object returned an HRESULT, it was converted to having void return in .NET. This
is because the RCW maps .NET method return values to COM method [out retval]
parameters. The [retval] parameter won’t be included as a method parameter but,
instead, determines the return type of the method and a method without a return
value is declared as void.

The HRESULT isn’t lost. When a COM server returns a failure HRESULT,
the RCW generates a .NET exception that can then be handled using the .NET
standard try, catch, finally mechanism. If the COM component supports the
ISupportErrorInfo interface, the RCW will then make rich error information
inside the .NET exception.

What this does mean, however, is success HRESULTs cannot be directly
returned. To get success HRESULTs (Such as S_FALSE or S_TRUE) back from
COM method calls, the PreserveSigAttribute is required and TLBIMP doesn’t use
this attribute by default. Therefore to get a nonfailure, HRESULT requires writing a
custom callable wrapper.

C h a p t e r 6 : I n t e g r a t i n g L e g a c y C o d e w i t h C # 1 7 3

Figure 6-4 The Runtime Callable Wrapper (RCW)

COM Object Lifetime and Deterministic Finalization
The RCW COM objects are allocated from unmanaged memory, that is, they aren’t
managed by the .NET runtime. .NET doesn’t add any features that change the basic
responsibilities of the COM client to release references to the COM object. The
RCW itself is garbage collected, however. To handle the COM referencing, the
RCW maintains an internal cache to interface pointers and an RCW releases
references to COM objects that it holds when the runtime garbage collector releases
the RCW object. If the COM object needs to be released earlier, the explicit release
mechanism is required and a call to the static method Marshall.ReleaseComObject()
does just that. If any further calls are made to the RCW that involve the wrapped
object, an InvalidComObjectException will be generated.

Inheritance and RCW Objects
COM objects exposed to .NET as managed types through the RCW can be inherited
just like any other managed type. A few caveats exist, however. To inherit from an
RCW, the COM object it’s wrapping must be early-bound, externally creatable, and
COM-aggregatable.

Interface inheritance is also preserved with the exception of IUnknown and
IDispatch. IUnknown and IDispatch are consumed (or called) by the RCW on an
as-needed basis and aren’t exposed through the managed RCW class. IUnknown’s
AddRef() and Release() functionality is handled directly by the RCW. If necessary,
IDispatch style interaction can be achieved via reflection.

COM Connection Points
The RCW also manages the conversion of COM connection point interfaces to C#
events which is a considerable feature as these two approaches to implementing
events are quite different. They are compatible enough that a conversion is possible,
however.

To illustrate this conversion, we use a simple COM countdown timer component.
This component implements a Countdown object that sources an OnElapsedTimer()
event. (This component comes straight from COM+ Programming from the Ground
Up by Mark Michaelis (Osborne/McGraw-Hill)). The IDL for the event source is as
follows:

[default, source] dispinterface _ICountdownEvents;

1 7 4 C # D e v e l o p e r ' s H e a d s t a r t

Note, the event source interface is prefixed with an underscore “_” so it’s a
hidden interface in environments like Visual Basic 6. This won’t stop the interface
from showing up in the generated metadata, however. When TLBIMP generates the
metadata for the RCW, it generates a delegate named after the interface, followed by
an underscore, and then followed by the name of the event. In the server, the name
of the event is OnTimeElapsedEventHandler(), therefore, the name of the
delegate is _ICountdownEvents_OnTimeElapsedEventHandler().

To import the Timers.DLL into .NET, the following command line is used:

tlbimp Timers.dll /out:TimersAsm.dll

Once imported, the TimersAsm.DLL can be used like any other assembly.
The following C# sample found in CountdownClient.cs shows the countdown
timer in action.

// build command: csc CountdownClient.cs /r:TimersAsm.dll

using System;

using TimersAsm;

class EntryPoint

{

static int TimerHandler(int RemainingIterations)

{

Console.WriteLine("Handled countdown timer");

Console.WriteLine(" Remaining iterations: {0}",

RemainingIterations);

}

public static void Main()

{

Countdown cd = new Countdown();

// set the countdown interval

cd.Interval = 2000;

cd.IterationCount = 10;

cd.OnTimeElapsed +=

new _ICountdownEvents_OnTimeElapsedEventHandler(TimerHandler);

string userInput;

Console.WriteLine("Waiting for timers...");

userInput = Console.ReadLine();

}

}

C h a p t e r 6 : I n t e g r a t i n g L e g a c y C o d e w i t h C # 1 7 5

1 7 6 C # D e v e l o p e r ' s H e a d s t a r t

In the previous code, the TimersAsm namespace generated by running TLBIMP
on the Timers.DLL is used. Then, the event delegate method TimerHandler() is
declared. This method receives the Countdown.OnTimerElapsed event. Finally, an
instance of Countdown is created and initialized, and a new delegate is created for
the event handler.

Threading of the RCW Components
Developers who never got around to understanding the intricacies of each COM
threading model or apartment type should be glad to know that, in .NET, the
apartment architecture has essentially disappeared. This means all the complexities
that accompanied these concepts have essentially evaporated and you needn’t be
concerned about them, unless you’re still interfacing with COM components. The
downside of no longer having the apartment model is now you, as the programmer,
are responsible for your own synchronization in situations when concurrent threads
could execute your code. We briefly touch on this in Chapter 3.

In the COM world, executables are required to initialize their threads as
either single-threaded apartment or multithreaded apartment, using a call
CoInitializeEx(NULL, COINIT_APATMENTTHREADED) or
CoInitializeEx(NULL, COINIT_MULTITHREADED), respectively. The need to
do this when calling from the managed world into COM still exists, but rather than
calling the Win32 API using DLLImport, you can set the apartment by changing
the ApartmentState property of the current thread, as follows:

using System.Threading;

Thread.CurrentThread.ApartmentState = ApartmentState.STA;

TIMERSLib.Stopwatch stopwatch = new TIMERSLib.Stopwatch();

stopwatch.Interval = 10000;

Setting the ApartmentState to ApartmentState.STA initializes the apartment
as a single-threaded apartment. To initialize the apartment as multithreaded, use
ApartmentState.MTA or ApartmentState.Unknown.

If you neglect to initialize the state of an apartment then the CLR automatically
initializes the apartment for you on the first call to a COM component. The default
state in this case is ApartmentState.MTA. Therefore, you should initialize the
apartment the thread runs in as soon as possible to ensure a compatible apartment
with the component you’re instantiating. If you fail to initialize the threading model,
then the COM object may be instantiated into a different apartment, which would
result in the marshalling of all calls to the COM object. Marshalling requires a proxy
to be invoked, causing the performance to degrade.

As was true with COM, a thread cannot be changed from one apartment type
to another. Therefore, setting the ApartmentState multiple times has no effect.
Neither can the apartment state of the thread be uninitialized. In fact, there are
times when the thread may have already been assigned an apartment (by a class
you’re accessing, for example) preventing you from initializing the apartment
state yourself.

The COM Callable Wrapper, Calling .NET Objects
from COM
As easily as .NET objects can use COM components, .NET objects themselves can
be exposed as COM components. C# classes are exposed as COM objects using a
COM Callable Wrapper (CCW).

As previously discussed, a likely reason to use a CCW is so you can develop new
business objects using .NET, and then use these business objects from existing
“legacy” applications. In this section, we rework our HospitalEmployee sample
from Chapter 2, separating the patient monitor from the employee classes, and then
building library assemblies. This helps us show the interoperability features in more
consumable pieces. The user interface is a standard Win32-based application
developed using Visual Basic 6.

The basic steps involved in getting an assembly exposed as COM objects are:

1. Build a .NET library assembly.

2. Export a type library from this assembly.

3. Register the assembly for use by COM clients.

4. Use the registered COM type library in an application.

Each of these steps is reviewed in more detail in the following.
We start by building and exporting an assembly with only the basic classes for

hospital employees to keep things simple. First, look at the HospitalEmployee
classes shown here:

// Build command: csc /t:library employees.cs

//

namespace HospitalEmployee

{

using System;

C h a p t e r 6 : I n t e g r a t i n g L e g a c y C o d e w i t h C # 1 7 7

public abstract class Employee

{

private string name;

public string Name

{

get { return name; }

set { name = value; }

}

}

public class Doctor : Employee

{

public Doctor()

{

}

}

public class Nurse : Employee

{

public Nurse()

{

}

}

}

This assembly is built using the following command:

csc /t:library employees.cs

TLBEXP Utility
Once we have our .NET assembly built, the TLBEXP utility is used to generate a
COM-type library from a .NET assembly. The type library is then used by COM
clients to call the .NET objects. Both early binding (direct vtable calls) and late
binding (IDispatch) can be automatically generated, but only dispatch interfaces are
generated by default. Because IDispatch is supported, your objects can be accessed
from the Windows Scripting engine. One type library is generated per assembly.

The following command is used to generate the Employees.tlb file:

TLBEXP Employees.dll

1 7 8 C # D e v e l o p e r ' s H e a d s t a r t

Using the OLE/COM Viewer application included with Microsoft Visual Studio
6, the following IDL can be exported:

// Generated .IDL file (by the OLE/COM Object Viewer)

//

// typelib filename: <could not determine filename>

[

uuid(4872AD93-E61B-3ABF-AA1B-4482E765885B),

version(0.1)

]

library EmployeeS

{

// TLib :

// TLib : Common Language Runtime Library :

{BED7F4EA-1A96-11D2-8F08-00A0C9A6186D}

importlib("mscorlib.tlb");

// TLib : OLE Automation : {00020430-0000-0000-C000-000000000046}

importlib("stdole2.tlb");

// Forward declare all types defined in this typelib

[

uuid(1D607B80-34A4-33AD-8F47-2F4098779B59),

version(1.0),

custom({0F21F359-AB84-41E8-9A78-36D110E6D2F9},

"Hospital.Employee.Employee")

]

coclass Employee {

[default] interface IDispatch;

interface _Object;

};

[

uuid(5F1B8177-1A40-3DAC-B474-7F1547FCF316),

version(1.0),

custom({0F21F359-AB84-41E8-9A78-36D110E6D2F9},

"Hospital.Employee.Doctor")

]

coclass Doctor {

[default] interface IDispatch;

interface _Object;

};

C h a p t e r 6 : I n t e g r a t i n g L e g a c y C o d e w i t h C # 1 7 9

[

uuid(ACA0E0E8-65CE-389E-8CD8-227BFFAA74B8),

version(1.0),

custom({0F21F359-AB84-41E8-9A78-36D110E6D2F9},

"Hospital.Employee.Nurse")

]

coclass Nurse {

[default] interface IDispatch;

interface _Object;

};

};

Taking a closer look at the IDL illustrates some interesting aspects of how the
CCW manages the conversion between COM and .NET. By default, a coclass is
built for each of the public classes in the assembly. Pure IDispatch interfaces are
exported, and there are no dispatch IDs and no custom interfaces other than to
_Object. This is the default behavior to help bridge the gap between COM’s strict
component versioning rules and .NET’s more flexible component versioning rules.
The _Object interface represents .NET’s System.Object. Inspecting the included
mscorlib.tlb reveals _Object itself is a well-defined interface, which represents the
public methods of System.Object.

[

uuid(65074F7F-63C0-304E-AF0A-D51741CB4A8D),

hidden,

dual,

nonextensible,

custom({0F21F359-AB84-41E8-9A78-36D110E6D2F9}, "System.Object")

]

dispinterface _Object {

properties:

methods:

[id(00000000), propget] BSTR ToString();

[id(0x60020001)] VARIANT_BOOL Equals([in] VARIANT obj);

[id(0x60020002)] long GetHashCode();

[id(0x60020003)] _Type* GetType();

};

In this scenario, the COM clients are restricted to late binding, however, they’re
less likely to break as new versions of the .NET classes are exported.

1 8 0 C # D e v e l o p e r ' s H e a d s t a r t

C h a p t e r 6 : I n t e g r a t i n g L e g a c y C o d e w i t h C # 1 8 1

To get direct vtable binding, or early binding, the default behavior can be directly
overridden using the ClassInterfaceAttribute custom attributes. Three options are
provided for the ClassInterfaceAttribute: AutoDispatch, AutoDual, and None. If
no attribute is applied, TLBEXP acts as if [ClassInterfaceAttribute(AutoDispatch)]
has been attached to all the exported classes. [ClassInterfaceAttrubute(None)]
eliminates the IDispatch interface from the coclass, but retains the _Object interface.
Finally, when [ClassInterfaceAttrubute(AutoDual)] is used, then a more complete
interface is automatically generated. This is shown and then described in the following:

[ClassInterface(ClassInterfaceType.AutoDual)]

public class Employee

{

...

}

First, an interface definition is automatically generated for the Employee
class. The interface name is the public class name prefixed with an underscore,
“_Employee”. The _Employee interface is then used as a base interface for both the
Doctor and Nurse implementation classes. This allows a client to ask the Doctor or
Nurse specifically for its implemented _Employee interface. In addition, a closer
look at the _Employee interface reveals the public members of the Employee class
are also exposed. This includes the derived public members of System.Object, as
well as the implemented members of the Employee class. In our case, this is simply
the Name property. The Name property itself is translated into COM property with
propput and propget methods. The entire IDL is shown in the following:

// Generated .IDL file (by the OLE/COM Object Viewer)

// typelib filename: <could not determine filename>

[

uuid(0C575428-3D34-3230-A484-248EFEF6B0F7),

version(0.1)

]

library EmployeeS_CI

{

// TLib : Common Language Runtime Library

// : {BED7F4EA-1A96-11D2-8F08-00A0C9A6186D}

importlib("mscorlib.tlb");

// TLib : OLE Automation : {00020430-0000-0000-C000-000000000046}

importlib("stdole2.tlb");

// Forward declare all types defined in this typelib

1 8 2 C # D e v e l o p e r ' s H e a d s t a r t

interface _Employee;

[

uuid(FD654229-861C-3FF3-A3CC-430F00B1AD52),

version(1.0),

custom({0F21F359-AB84-41E8-9A78-36D110E6D2F9},

"Hospital.Employee.Employee")

]

coclass Employee {

[default] interface _Employee;

interface _Object;

};

[

uuid(A2841D87-68E5-37DA-8938-2628F2038FD4),

version(1.0),

custom({0F21F359-AB84-41E8-9A78-36D110E6D2F9}, "Hospital.Employee.Doctor")

]

coclass Doctor {

[default] interface IDispatch;

interface _Employee;

interface _Object;

};

[

uuid(B9858BCB-4866-3052-8523-D6234AC54C86),

version(1.0),

custom({0F21F359-AB84-41E8-9A78-36D110E6D2F9}, "Hospital.Employee.Nurse")

]

coclass Nurse {

[default] interface IDispatch;

interface _Employee;

interface _Object;

};

[

odl,

uuid(316231A5-8A24-3CA1-B403-D1E8D8E036C3),

hidden,

dual,

nonextensible,

C h a p t e r 6 : I n t e g r a t i n g L e g a c y C o d e w i t h C # 1 8 3

oleautomation,

custom({0F21F359-AB84-41E8-9A78-36D110E6D2F9},

"Hospital.Employee.Employee")

]

interface _Employee : IDispatch {

[id(00000000), propget]

HRESULT ToString([out, retval] BSTR* pRetVal);

[id(0x60020001)]

HRESULT Equals(

[in] VARIANT obj,

[out, retval] VARIANT_BOOL* pRetVal);

[id(0x60020002)]

HRESULT GetHashCode([out, retval] long* pRetVal);

[id(0x60020003)]

HRESULT GetType([out, retval] _Type** pRetVal);

[id(0x60020004), propget]

HRESULT Name([out, retval] BSTR* pRetVal);

[id(0x60020004), propput]

HRESULT Name([in] BSTR pRetVal);

};

};

Finally, notice Doctor and Nurse objects implement IDispatch, _Employee, and
_Object but still don’t expose their own public implementations. To expose their
interfaces directly, the [ClassInterface(ClassInterfaceType.AutoDual)] also needs
to be applied to their classes.

This approach, while it might require more work, also helps to enforce more
careful planning on the part of the developer. Randomly emitting COM components
is generally a bad thing because it leads inevitably to COM version nightmares.
Well-defined interfaces that aren’t likely to change can be defined explicitly,
and then used as base interfaces for public classes. You can see this behavior in
System.Object and the _Object interface. This interface isn’t likely to change a
nd, therefore, can be safely exposed to COM clients.

While a rich interface can be automatically exported using
[ClassInterface(ClassInterfaceType.AutoDual)], COM versioning issues should
be carefully considered before deploying components this way. The recommended
approach is to define and use interfaces. Interfaces are discussed further later in
this chapter.

REGASM
COM clients cannot use the assembly and its type library until they’re registered.
.NET provides a special assembly registration utility—REGASM.exe
(REGASM)—for this purpose. REGASM can also generate a TLB, just like
TLBEXP, and it can optionally generate a .REG file to facilitate deployment of the
component to other systems. The following command line can be used to register the
Employees assembly, as well as to build a type library.

regasm /tlb:Employees.tlb /regfile:Employees.reg Employees.dll

Once the assembly is registered, it’s ready to be used by COM clients. But first,
please take note! One thing that many first-time “interoperators” miss, especially
if they’re used to COM library location, is it’s the .NET runtime that loads the
assembly, not COM. COM actually loads up MSCOREE.LIB when a client
references your type library. This can quickly be verified by looking at the registry
entries generated by REGASM.

[HKEY_CLASSES_ROOT\CLSID\{D83843D8-ACCE-3A29-B25F-14EEF5101AD0}\Inpro

cServer32]

@="C:\WINNT\System32\MSCorEE.dll"

"ThreadingModel"="Both"

"Class"="HospitalEmployee.Doctor"

"Assembly"="EmployeeS, Ver=0.0.0.0, Loc="""

What this means is standard .NET assembly location procedures are used to find
your assembly, not simply the COM registry lookups. So, the COM client either
must be in the same directory as the assembly, the assembly must be deployed to
the Global Assembly Cache (GAC), or a custom configuration file is required.
See Chapter 3 for additional details on how the CLR locates assemblies.

One final note on configuration before we move on: the “Assembly” item in the
registry could be edited to include the path, but this isn’t recommended for anything
other than to facilitate testing during development. One of these entries is generated
for each exported class and when the exact directory the assembly gets deployed to
changes (which is likely), someone has to hack the registry. The .NET facilities
provided are far more functional and easier to use once you understand them.

To use our newly exposed objects from Visual Basic, we simply add a reference
and write some code against the interfaces. Nothing different or special is required.
The following is a snippet of Visual Basic 6 code that uses the Doctor class.
This sample code assumes a final version of Employees.cs in which the

1 8 4 C # D e v e l o p e r ' s H e a d s t a r t

AutoDualAttribute has also been applied to the Doctor. Without that attribute, late
binding must be used.

Dim d As New Doctor

d.Name = Text1.Text

MsgBox "Hello Dr. " & d.Name

COM Callable Wrapper
The set of features and functions the .NET runtime loads to interact with a COM
object is called the COM Callable Wrapper, or CCW. The CCW does exactly what
its name implies: it wraps your .NET types in such a way that COM can be called
on them. The CCW is a proxy that allows COM calls to cross from unmanaged to
managed code, managing COM reference-counting and marshalling data as required.
One CCW is created for each .NET object and, as previously discussed, your classes
aren’t invoked directly by the COM client. Instead, the core .NET runtime is
invoked and, with it, the CCW, which is then responsible for loading and invoking
instances of your classes. The .NET core runtime implements the COM interfaces
for the COM clients. See Figure 6-5.

The .NET core runtime also implements IUnknown for reference counting and
IDispatch for late binding to your .NET objects. These interfaces aren’t seen or
required by the .NET object. The CCW itself isn’t a managed object. It maintains its
own memory separate from the .NET managed world, so it can interoperate properly
with the unmanaged world.

Additional interfaces are constructed or synthesized on demand by the CCW. These
are COM interfaces useful to clients you don’t have to worry about implementing.
This includes IDispatch, IProvideClassInfo, ISupportErrorInfo, IErrorInfo,
IConnectionPoint and IConnectionPointContainer, and IObjectSafety.

The CCW itself is not garbage collected, but the .NET objects it wraps are. The
CCW maintains its own heap and is reference-counted. When COM clients release
all references to the .NET object the CCW wraps, it removes itself from memory,

C h a p t e r 6 : I n t e g r a t i n g L e g a c y C o d e w i t h C # 1 8 5

Figure 6-5 COM Callable Wrapper (CCW)

thereby releasing the reference to the managed object it was wrapping. Only at this
point will the garbage collector be able to clean up the memory from these resources.

Interfaces
Before we continue on to the next topic that covers exposing .NET Events to COM
Clients, let’s spend a few minutes discussing COM interfaces and versioning.

As you saw previously in this section, all public methods on a class are exported
when AutoDual is specified. This includes derived objects that are flattened in the
default hierarchy. If you don’t want all your exported objects to have the
System.Object methods, you can override this behavior by defining an interface
for the class. In this way, you can determine exactly what’s exposed from your class.

The following source is used in the next section on events, but for purposes of our
discussion here, the focus is on the class definition and the IPatient interface.

The following interface is defined for IPatient:

public interface IPatient

{

string Name

{

get;

set;

}

event MonitorDelegate HandleMonitorEvent;

void FireMonitorEvent(bool IsEmergency);

}

Then, that interface is used to derive the PatientMonitor class as follows:

public class PatientMonitor : IPatient

{

...

}

IPatient is then listed as an interface on the class. Multiple interfaces can be
inherited in this way. Note, TLBEXP adds some interfaces on its own, most notably
_Object.

PatientMonitor uses IPatient to control what the external COM client sees for
the class. Changes to the public interface of PatientMonitor for managed types
won’t be exposed automatically to COM. This helps keep the COM interfaces
immutable. When the interface does need to change, IPatient is then updated and

1 8 6 C # D e v e l o p e r ' s H e a d s t a r t

a new interface ID (IID) is generated, indicating a new version of the interface is
now available. To preserve the old interface, a new interface could also be derived
from IPatient and exposed.

Once IPatient is defined, the default _Patient generated by AutoDual is no
longer required. This results in a class that’s significantly less cluttered and easier
to use than the default.

Providing .NET Events to COM Clients
If the .NET types you expose to COM fire events, it’s highly likely you’ll want your
COM clients to be able to register for and receive these events. COM clients can use
the events in one of two ways: first, the COM client can implement the delegate
interface exposed by your type library directly and, second, the .NET type can be
tagged with a custom attribute that TLBEXP uses to define a source event interface
so the events are exposed as standard COM-connection point style events.

To show events, we use a modified version of the PatientMonitor class from
Chapter 2. We also use the lessons previously learned about interfaces and define
a default interface for the PatientMonitor class called IPatient. This restricts the
public members of PatientMonitor to those defined by IPatient.

namespace Hospital.Interfaces

{

using System;

using System.Runtime.InteropServices;

public delegate void MonitorDelegate(bool IsEmergency);

public interface IPatient

{

string Name

{

get;

set;

}

event MonitorDelegate HandleMonitorEvent;

void FireMonitorEvent(bool IsEmergency);

}

}

namespace Sample

{

C h a p t e r 6 : I n t e g r a t i n g L e g a c y C o d e w i t h C # 1 8 7

1 8 8 C # D e v e l o p e r ' s H e a d s t a r t

using System;

using System.Timers;

using Hospital.Interfaces;

public class PatientMonitor : IPatient

{

public PatientMonitor()

{

// Fire up the monitor as soon as we're created.

StartMonitorTimer();

}

// Our public event monitor

public event MonitorDelegate HandleMonitorEvent;

// private value that indicates

// an emergency situation

private bool emergencyFlag;

// store the name of the patient we're monitoring

private string patientName;

/// An internal timer is used to simulate

/// monitor events

/// In our demo, the monitor goes off every 2 seconds

/// and alternates between a normal call or an

/// emergency call

private void StartMonitorTimer()

{

Timer sleepTimer = new Timer();

sleepTimer.Tick += new EventHandler(OnTimedEvent);

sleepTimer.Interval = 2000;

sleepTimer.Enabled =true;

}

/// When the timer Tick event is raised, we fire our monitor event

void OnTimedEvent(object source, EventArgs e)

{

// Indicate whether this is an emergency

FireMonitorEvent(emergencyFlag);

emergencyFlag = !emergencyFlag;

}

// FireMonitorEvent fires event delegates if

C h a p t e r 6 : I n t e g r a t i n g L e g a c y C o d e w i t h C # 1 8 9

// there are any.

public void FireMonitorEvent(bool IsEmergency)

{

Console.WriteLine("Monitor Event!");

if(HandleMonitorEvent != null)

{

// Use the private delegate instance to invoke

// the delegate methods

HandleMonitorEvent(IsEmergency);

}

}

public string Name

{

get

{

return patientName;

}

set

{

patientName = value;

}

}

}

}

By default (with no interoperability attributes applied), TLBEXP generates
add_HandleMonitorEvent and remove_MonitorEvent methods that take an
IDispatch pointer. A client can then implement a compliant class and pass the
IDispatch pointer to add or remove itself from the events. The following IDL was
generated by compiling PatientMonitor.cs into an assembly, and then using the
OLEView utility to save the generated IDL.

// Generated .IDL file (by the OLE/COM Object Viewer)
//
// typelib filename: PatientMonitor.tlb

[
uuid(65F0C790-7B4B-3431-9FBB-E5385729632C),
version(0.1)

]
library PatientMonitor

1 9 0 C # D e v e l o p e r ' s H e a d s t a r t

{
// TLib :
// TLib : Common Language Runtime Library
// : {BED7F4EA-1A96-11D2-8F08-00A0C9A6186D}
importlib("mscorlib.tlb");
// TLib : OLE Automation : {00020430-0000-0000-C000-000000000046}
importlib("stdole2.tlb");

// Forward declare all types defined in this typelib
interface IPatient;

[
uuid(39F079AA-E1C7-3110-885B-7CC60C3D0F59),
version(1.0),
noncreatable,
custom({0F21F359-AB84-41E8-9A78-36D110E6D2F9},
"Hospital.Interfaces.MonitorDelegate")

]
coclass MonitorDelegate {
[default] interface IDispatch;
interface _Delegate;
interface _Object;
interface ICloneable;
interface ISerializable;

};

[
odl,
uuid(FACCC94A-6AF8-3E7B-B2E6-E624FE293167),
version(1.0),
dual,
oleautomation,
custom({0F21F359-AB84-41E8-9A78-36D110E6D2F9},
"Hospital.Interfaces.IPatient")

]
interface IPatient : IDispatch {
[id(0x60020000), propget]
HRESULT Name([out, retval] BSTR* pRetVal);
[id(0x60020000), propput]
HRESULT Name([in] BSTR pRetVal);
[id(0x60020002)]
HRESULT add_HandleMonitorEvent([in] IDispatch* value);
[id(0x60020003)]

HRESULT remove_HandleMonitorEvent([in] IDispatch* value);
[id(0x60020004)]
HRESULT FireMonitorEvent([in] VARIANT_BOOL IsEmergency);

};

[
uuid(3E6AEB36-FAF4-31FA-8EA9-C737606F233F),
version(1.0),
custom({0F21F359-AB84-41E8-9A78-36D110E6D2F9}, "Sample.PatientMonitor")

]
coclass PatientMonitor {
[default] interface IDispatch;
interface _Object;
interface IPatient;

};
};

While what’s provided by default is okay, it’s not quite what we’re looking
for in terms of event integration. Luckily, it’s also not the final answer. We
can add connection-point style interfaces with the addition of the
ComSourceInterfacesAttribute() to the PatientMonitor class. When TLBEXP
sees this, it generates appropriate interface definitions and, when the CCW loads the
object, it performs the appropriate event marshalling. Note, this also requires us to
define an interface for the event, which is the recommended approach anyway. In
this way, the COM clients have a well-defined interface to support, even if they
decide not to use connection points.

Here are the additions to the PatientMonitor:

[InterfaceTypeAttribute(ComInterfaceType.InterfaceIsIUnknown)]

public interface IMonitorEvent

{

void HandleMonitorEvent(bool IsEmergency);

}

...

[ComSourceInterfaces("Hospital.IMonitorEvent")]

public class PatientMonitor : IPatient

{

...

}

...

C h a p t e r 6 : I n t e g r a t i n g L e g a c y C o d e w i t h C # 1 9 1

These source additions cause corresponding changes to the generated type library.
Note, the following includes only the new lines of IDL. First, a new interface is
defined for IMonitorEvent:

[

odl,

uuid(FF624E40-C849-3AB9-A792-202E1A76B6E5),

version(1.0),

oleautomation,

custom({0F21F359-AB84-41E8-9A78-36D110E6D2F9},

"Hospital.Interfaces.IMonitorEvent")

]

interface IMonitorEvent : IUnknown {

HRESULT _stdcall HandleMonitorEvent([in] VARIANT_BOOL IsEmergency);

};

The IMonitorEvent is included in the PatientMonitor coclass and is tagged as
the default event source.

[default, source] interface IMonitorEvent;

This enables COM clients to use the event as they would any other. The sample
code includes a PatientMonitor Visual Basic application that uses the events.

Supporting IDispatch-based Events
To use events from a scripting environment or any environment that doesn’t support
dual interfaces, you also need to use IDispatch style events. To tag the event
interface as a dispinterface, another interface is defined with the
InterfaceTypeAttribute but, this time, InterfaceIsIDispatch is specified.

[InterfaceTypeAttribute(ComInterfaceType.InterfaceIsIDispatch)]

public interface IDispMonitorEvent

{

void HandleMonitorEvent(bool IsEmergency);

}

To support both dual and dispatch-only environments, two interfaces must
be defined: one for the standard dual interface and one for IDispatch. Multiple
interfaces can be specified in the ComSourceInterfaceAttribute by separating
the interfaces with a null, which the following demonstrates:

1 9 2 C # D e v e l o p e r ' s H e a d s t a r t

[ComSourceInterfaces(

"Sample.Interfaces.IMonitorEvent\0Sample.Interfaces.IDispMonitorEvent"

)]

public class PatientMonitor : IPatient

{

...

}

If dispatch interfaces are used, remember, the server is now calling late bound
into the dispatch-based client. Therefore, the invocation of the event delegate for a
dispatch-based interface cannot be done directly, but must be done using reflection.

Threading of .NET Components
In COM, an object indicates which apartment it can run in by a setting in the
registry. Some COM objects can run in any apartment, while others can only run
in an STA, MTA, or, if on Windows 2000+, a Thread Neutral apartment. All classes
in .NET are assigned the “Both” threading model. Therefore, managed classes
instantiated by COM are instantiated into the same apartment as the calling apartment.
By assigning managed classes to be the threading model “both”, you can avoid
having calls go through a proxy when invoking a method on the managed class.
The only time a proxy is required, therefore, is when the managed class is passed
to a COM object that’s running in a different apartment.

Additional COM Interoperability Attributes
We already mentioned several COM interoperability attributes in this section. .NET
provides several additional attributes that can be used to control the actions of the
CCW. The more relevant of these are discussed in this section.

Controlling GUIDs and Dispatch IDs
The GuidAttribute() is used to assign a GUID explicitly to a class. If the GUID
isn’t explicitly assigned, then a GUID is automatically generated at export time. The
value of the GUID is generated from a hash that includes the fully qualified class
name, which guarantees both uniqueness, as well as that it will be the same every
time it’s generated, as long as the class definition doesn’t change. Explicitly
assigning this GUID via the GuidAttribute() would allow the same GUID to be
used across changes. This is most appropriate during development because using the

C h a p t e r 6 : I n t e g r a t i n g L e g a c y C o d e w i t h C # 1 9 3

same GUID for different implementations is against standard COM guidelines. Here
is an example of how to use the GuidAttribute().

[GuidAttribute("7BE8FAD1-BDB7-437d-AAA2-E92705518800")]

public class Test

{

}

Managed interface declarations are exported as COM interfaces. The IID of the
interface is automatically generated if it isn’t supplied by the managed declaration.
The IID is generated from a hash of the fully-qualified interface name as well as
each method signature on the interface. Therefore, a change in the method signatures
results in a new IID. The GuidAttribute() can also be used to set the IID just as it
was for the class.

Class Visibility
The ComVisibleAttribute() can be used to hide or show types from COM
that would otherwise be public. Applied at the interface or class level,
ComVisibleAttribute() hides a managed type from COM or explicitly makes the
class available to COM. The attribute can also be applied to an entire assembly,
which then enables you to select explicitly which public .NET types to make visible.

Default ProgID
The default COM ProgID is the namespace followed by the class name. The
ProgIdAttribute can be used to override this behavior and explicitly provide the
class name.

Additional .NET to Type Library Conversions
When a type library is generated from a .NET assembly, some additional
conversions take place beyond what was discussed already in this section. The
following discusses some of the more significant conversions.

Translating HRESULTs and Method Return Values
In reverse fashion to the RCW, the CCW translates .NET server object exceptions
into failure HRESULTs. Exceptions include an HRESULT property for this very
reason and, therefore, any custom exception you define should also initialize
HRESULT in its constructor.

1 9 4 C # D e v e l o p e r ' s H e a d s t a r t

As exceptions are translated to HRESULTs, so, too, are return values translated
to [out, retval] parameters. When success-based HRESULTs are required, the
PreserveSigAttribute() can be used to tell the CCW not to perform the typical
translation.

Type Library Version
Version information in the type library is two digits, while it’s four digits in a .NET
assembly. The first two parts of the assembly version are kept and the last two are
lost. However, if no version is specified, as in our sample, the default version in the
.NET assembly is 0.0.0.0, which converts to 0.1 in the typelib.

[

uuid(64F572ED-D8EB-39C8-96D7-745F38AC68B3),

version(0.1)

]

Duplicate Type Names
Type names are generally exported as they’re named in the C# type definition,
but without the namespace to qualify it. This may lead to a collision in a large
namespace. If it does, the TLBEXP numbers the second class name with an
underscore (“_”) and a number. For the first duplicate it finds, it uses the
number 2. In our sample, we defined a Hospital.Interfaces namespace and we
added a Hospital.Utilities namespace. If we add a class Test to both of them, the
second one will be named Test_2 when it’s exported.

Enum Type Conversion
Enum types are exported as COM enum types, with each of the enum members
prefixed with the enum name to insure uniqueness. The sample enum from Chapter
2, is exported as follows:

typedef [uuid(C8E957A3-952E-33A2-A71F-838C40C9A53C) ,

custom({0F21F359-AB84-41E8-9A78-36D110E6D2F9},

"Sample.Utilities.TheWays")]

enum {

TheWays_North = 1,

TheWays_South = 2,

TheWays_East = 3,

TheWays_West = 4

} TheWays;

C h a p t e r 6 : I n t e g r a t i n g L e g a c y C o d e w i t h C # 1 9 5

Data Marshalling
The .NET runtime provides a rich, optimized data marshaller for transferring data
types between managed and unmanaged code. The same data marshalling engine is
used by both .NET’s COM and Platform Invoke (PInvoke) services (to be described
shortly). Most data marshalling is straightforward, but a few caveats and special
cases should be discussed.

The marshaller recognizes isomorphic types that don’t require any conversion
because they have identical representations in both managed and unmanaged code.
Isomorphic types include all integer and real data types, as well as pointers to
functions.

Nonisomorphic types are those that may require some conversion between
managed and unmanaged code. The conversion may vary based on the situation.
Let’s look at Boolean type marshalling as an example. When Boolean is marshaled
for the purpose of PInvoke, the type is converted to a 2-byte value, with true being
represented by 1 and false by 0. When Boolean is marshaled for COM
interoperability, it is to the COM VARIANT_BOOL type: true is –1, and false
is 0. Another example is char, which is converted to either an ANSI or a Unicode
character.

Parameters may be marked with the InAttribute() and/or OutAttribute(), which
can provide some useful information to the marshaller and can reduce expensive
data marshalling. In particular, the marshaller may decide it only has to do the
conversion in a single direction. In the absence of the attribute, the marshaller
assumes all parameters are In/Out.

Strings and the MarshalAsAttribute
If something beyond a standard conversion is required, MarshalAsAttribute() can
be used to provide some control over data marshalling. To illustrate the attribute,
let’s look at the default string behavior, and then see how it can be changed with
MarshalAsAttribute().

The default behavior for a string conversion in the COM case is to use the COM
BSTR type as the following illustrates.

public void Test2(string TestMessage)

This yields IDL, as follows:

HRESULT Test2([in] BSTR TestMessage);

1 9 6 C # D e v e l o p e r ' s H e a d s t a r t

If we want to be sure to expose a plain wide character string for Unicode
purposes, it can be specified as follows:

public void Test2([MarshalAs(UnmanagedType.LPWStr)] string TestMessage)

Which yields the following IDL:

HRESULT Test2([in] LPWSTR TestMessage);

Marshalling Objects
In addition to all the native and string-type marshalling available, standard and
default marshalling is also provided for objects.

A common occurrence for an object library is to return a reference of one type or
another to a client. In the following sample code, we define an EmployeeFactory
class, which is derived from IEmployeeFactory interface. The EmployeeFactory
defines a method for returning an employee object to the client.

public interface IEmployeeFactory

{

Employee GetEmployee(string Name);

}

public class EmployeeFactory : IEmployeeFactory

{

public Employee GetEmployee(string Name)

{

// code to find and return employee

// goes here

}

}

By default, the following interface is generated:

interface IEmployeeFactory : IDispatch {

[id(0x60020000)]

HRESULT GetEmployee(

[in] BSTR Name,

[out, retval] IDispatch** pRetVal);

};

C h a p t e r 6 : I n t e g r a t i n g L e g a c y C o d e w i t h C # 1 9 7

We can see GetEmployee() returns an IDispatch pointer by default. If we use an
interface to define the Employee object, then a tighter binding will be seen in this
method. When ClassInterfaceAttribute is applied to the Employee class using the
AutoDual option, we get the following result:

interface IEmployeeFactory : IDispatch {

[id(0x60020000)]

HRESULT GetEmployee(

[in] BSTR Name,

[out, retval] _Employee** pRetVal);

};

The previous example used the _Employee interface to return an object reference
to the user. This is not always desired. In some cases, late binding may be preferred,
especially if different types of employees have different methods. If the
GetEmployee() method is defined as returning an object, then it will be marshaled
across the COM boundary as a VARIANT* by default. Additional MarshallAs()
attributes exist to control the conversion from object if either an IDispatch or even
IUnknown is desired. First, let’s consider the default behavior. If we change the
GetEmployee() method as defined on the IEmployeeFactory interface to return
object instead of Employee as follows:

public object GetEmployee(string Name)

the following IDL will be generated.

HRESULT GetEmployee([in] BSTR Name, [out, retval] VARIANT* pRetVal);

MarshallAsAttribute() can be used to override that behavior. If the method is
defined as follows

[return:MarshalAs(UnmanagedType.IUnknown)]

object GetEmployee(string Name)

it yields the following IDL:

HRESULT GetEmployee([in] BSTR Name,

[out, retval] IUnknown** pRetVal);

Finally, if, in spite of the interface just defined, IDispatch is still desired, the
following method declaration

1 9 8 C # D e v e l o p e r ' s H e a d s t a r t

[return:MarshalAs(UnmanagedType.IDispatch)]

object GetEmployee(string Name);

yields the following IDL:

HRESULT GetEmployee([in] BSTR Name,

[out, retval] IDispatch** pRetVal);

These are only some of the conversions provided. The Platform SDK includes
specifications for both Data Marshalling and COM Interoperability, in which many
additional details are covered. The COM Interoperability Specification includes two
appendixes that detail the default type export and import conversions.

Finally, if the provided conversions aren’t enough, custom wrappers can be
constructed.

Platform Invocation Services, Calling Unmanaged
APIs from C#
The .NET Framework also includes support for directly calling unmanaged APIs
provided by DLLs. This is referred to as Platform Invocation, or PInvoke for short.

PInvoke services include handling exceptions and raising them in the client.
These services also insure that any class—as well as any client to the class making
the PInvoke calls—is fully trusted.

We begin with the “Hello World” of PInvoke applications, which is calling the
Win32 MessageBox() API. This is a simple API and can actually come in handy
when you need to pop up a message. (Note, this functionality is supported in both
the WinForms and VisualBasic namespaces, too.) Win32 APIs and any DLL-based
public function can be accessed directly from within C# using the
DLLImportAttribute() as the following illustrates.

public class Utilities

{

[DllImport("user32.dll")]

public static extern int MessageBox(int hWnd, string Text,

string Caption, uint Type);

}

C h a p t e r 6 : I n t e g r a t i n g L e g a c y C o d e w i t h C # 1 9 9

This can be called from code as follows:

Utilities.MessageBox(0, "hello there", "C# Developer's Headstart", 0);

The next sample uses the Win32 API GetComputerName() to return the current
computer name into the supplied buffer. The Windows API declaration for
GetComputerName looks like this:

BOOL GetComputerName(

LPTSTR lpBuffer, // computer name

LPDWORD lpnSize // size of name buffer

);

Note, StringBuilder is used so we can easily initialize a string buffer of a
predetermined size. Also, because the second parameter of the API calls for a pointer
to a DWORD, we need to insure that our call is by reference, so the ref keyword is
used in the declaration, as well as in the call. The C# declaration for this function
and the method that uses it look like this:

[DllImport("kernel32.dll", EntryPoint="GetComputerName")]

public static extern int GetComputerNameAPI(

StringBuilder Buffer, ref int Size);

public static string GetComputerName()

{

int sizeBuffer = 80;

StringBuilder nameBuffer = new StringBuilder(sizeBuffer);

int result = GetComputerNameAPI(nameBuffer, ref sizeBuffer);

return nameBuffer.ToString();

}

Note, we use the EntryPoint setting on the DllImport attribute to change the
name of the function, so we can add our own GetComputerName() method
directly to our Utility class.

API functions that require callbacks may also be invoked using delegates. Clearly,
calling directly into the .NET managed environment isn’t valid, so PInvoke marshals
the delegate to a function pointer that’s appropriate for receiving the callback, and
then invokes the delegate from the function.

2 0 0 C # D e v e l o p e r ' s H e a d s t a r t

C h a p t e r 6 : I n t e g r a t i n g L e g a c y C o d e w i t h C # 2 0 1

Interoperability Through Managed C++
Possibly one of the easiest ways to interoperate between the managed and
unmanaged world—at least for C++ programmers—is to use Managed C++. If you
have an existing C++ application, then adding Managed C++ code to that provides
a great means of exposing it to the managed world. Furthermore, through Managed
C++, you can easily access the abundance of classes within the .NET Framework
along with any additional classes you may write in the managed world. Weaving
Managed C++ among unmanaged C++ provides a great means for intertwining both
the managed and the unmanaged world together within one language without the
need to use TLBIMP or TLBEXP and COM. If you’re trying to access numerous
Win32 API, (not made available through the .NET Framework) and you don’t want
to go through PInvoke for each method you’re calling—as you would in your
C#—then using unmanaged C++ to make the API calls and Managed C++ to
provide the interface is a convenient solution.

In this section, we briefly introduce Managed C++ and discuss the various options
it provides for interoperability. This section is targeted at existing C++ programmers
and isn’t intended to be a complete Managed C++ reference. Instead, this is intended
to be a survey, so you can understand how Managed C++ can be used as an
interoperability solution.

Adding Managed C++ code to native C++ has two steps. The first is to use the
cl.exe compiler (the C/C++ compiler) with the /CLR option. This option causes the
compiler to insert managed code into the executable. If you run Managed C++ code
through the debugger, you’ll notice, just as with C#, the first instruction is a jump
instruction to the MSCOREE library. In other words, the CLR gets loaded
immediately and, essentially, takes control of the process, appropriately calling
into the managed and unmanaged worlds as required.

NOTE

To compile your C++ code for the Common Language Runtime, use the /CLR switch. This
provides access to the Managed C++ extensions. At a minimum, all projects are required to have
#using <mscorlib.dll> defined.

The next step is to use the new preprocessor command #using, which adds a
reference to a project in a similar fashion to the /r:<assembly> option found in the

2 0 2 C # D e v e l o p e r ' s H e a d s t a r t

C# compiler, csc.exe. At a minimum, all projects are required to have #using
<mscorlib.dll> defined. The following is a variation on hello world. (Note, the
/MD option is required for linking to the MSVCRT.LIB.)

//Build command: cl.exe /GX ByeBye.cpp /CLR /MD

//Debug build command cl.exe /Zi /GX ByeBye.cpp /CLR /MDd

#using <mscorlib.dll>

#include <iostream>

using namespace std;

void main()

{

std::cout << "Bye bye, boys! Have fun storming the castle!\n";

System::Console::WriteLine("Think it will work?");

std::cout << "It would take a miracle.\n";

}

In this sample (ByeBye.cpp), notice the use of STL’s (Standard Template
Library) cout class to write to standard out. Immediately following, is the .NET
Framework method for the same function, System::Console::WriteLine(). Notice
standard C++ syntax is used in the call to the .NET Framework. For example, in
place of the “dot” operator, the namespace operator of two colons is used. The same
operator is used for calling the static method WriteLine(). Managed C++ conforms
to native C++ syntax, although some additional keywords have been added, as you
will see shortly.

If you use Managed C++ classes within your code, the same rules for garbage
collection apply as those that accompany all managed types. Therefore, even though
you use new to instantiate your classes, you needn’t code in a call to delete. To
do so isn’t an error; it simply isn’t necessary because the garbage collector is
responsible for cleaning up your classes if you don’t. The following is some sample
code (WebDump.cpp) that demonstrates the principal.

//Build command: cl.exe /GX file.cpp /CLR

//Debug build command cl /Zi /GX file.cpp /CLR

#include <iostream>

using namespace std;

#using <mscorlib.dll>

using namespace System;

C h a p t e r 6 : I n t e g r a t i n g L e g a c y C o d e w i t h C # 2 0 3

#using <System.Net.dll>

using namespace System::Net;

using namespace System::IO;

void main()

{

String* URL;

Stream* stream;

int bytes_read = 0;

int total_bytes_read = 0;

const int max_to_read = 255;

Byte buffer[] = new Byte[max_to_read];

Console::WriteLine("Enter the URL (http://<domain>/...):");

URL = Console::ReadLine();

WebRequest* myRequest =

WebRequestFactory::Create("http://localhost/localstart.asp");

stream = myRequest->GetResponse()->GetResponseStream();

while((bytes_read = stream->Read(buffer, 0, max_to_read)))

{

total_bytes_read+=bytes_read;

Console::WriteLine(Text::Encoding::ASCII->GetString(buffer));

}

return;

}

In the previous code, the static method WebRequestFactory::Create() returns
an instantiated WebRequest class. You’d normally have to call delete in standard
C++ (or Release() for COM). In this case, however, delete isn’t called explicitly
and, instead, we rely on the garbage collector to clean up any instantiated managed
classes. The one advantage of calling delete is it invokes an immediate call into your
destructor, rather than waiting for the garbage collector to handle this for you. Note,
just as with C#, a destructor in your managed class is converted to an IL Finalize()
method by the compiler.

2 0 4 C # D e v e l o p e r ' s H e a d s t a r t

In C++, all managed class variables are declared as pointers:

String* URL;

Stream* stream;

Byte buffer[] = new Byte[max_to_read];

...

Furthermore, notice that to avoid using the fully qualified name, such as
System::String, you can bring a class into the global namespace using the standard
C++ syntax, using namespace.

The previous code demonstrates how easy calling the .NET Framework is
from your C++ code by adding the /CLR option and the #using <mscorlib.dll>
preprocessor command. The other obvious scenario, however, is calling your C++
code from within the managed world. The answer is partly the same. However, you
also need to create managed types within your C++ code. This generates IL code,
just as any C# or VB class does. Through Managed C++, you can include C++ in
the list of languages that interoperate on the .NET platform.

To write Managed C++, you need to use some of the managed extensions for
C++. The managed extensions are new custom compiler directives that cause the
compiler to generate IL code in place of assembler code. For example, to declare
a C++ class as a managed class, you decorate the class with the __gc managed
extension, as shown in this code snippet from WhoAmI.cpp:

// Build Command:

// Module: cl.exe WhoAmI.cpp /CLR:noAssembly /LD /link advapi32.lib

// (Use this if calling from C#.)

#using <mscorlib.dll>

#include <windows.h>

#include <lmcons.h> // Includes definition of UNLEN.

__gc class CCurrentUser

{

public:

__property System::String* get_Name()

{

WORD length=UNLEN;

TCHAR m_username[UNLEN + 1];

GetUserName((LPTSTR)&m_username, (LPDWORD)&length);

return m_username;

}

};

C h a p t e r 6 : I n t e g r a t i n g L e g a c y C o d e w i t h C # 2 0 5

This class can be used within your C++ code or from C# (or any .NET language).
To access the class from C#, you need to include a reference to the class. The
following is the C# code used to access the class.

// Build Command:

// csc.exe /addmodule:WhoAmI.dll WhoAmI.cs

// Note: Be sure to compile WhoAmI.cpp first.

namespace CSharpHeadStart

{

class EntryPoint

{

static void Main()

{

CCurrentUser me = new CCurrentUser();

System.Console.WriteLine(me.Name);

return;

}

}

}

You can also declare value types in your Managed C++ code using the __value
keyword. Although the struct keyword is used with this declaration, this is simply to
be consistent with C#’s way of declaring value types. Class could also be used with
the value type declaration, if so desired, because memory management in C++ is the
same for classes and for structs.

__value struct SuperType

{

private:

int m_int;

public:

SuperType(int value)

{

m_int = value;

}

void Super()

{

Console::WriteLine("super type is {0}", __box(m_int));

}

};

As with C++, managed value type variables directly contain their data. They don’t
simply point to their data.

Note the use of the __box keyword in the previous code. __box is used to box
value types exactly as assigning the value type to System.Object works in C#.
Because the previous Write Line() function takes a garbage-collected class as
a second parameter, you need to box the integer that’s passed.

One problem with the garbage-collection algorithm is it moves objects in
memory. This isn’t a problem for managed code because the garbage collector
automatically updates any references to the moved objects. However, this won’t
work when direct memory manipulation is required. To overcome this, the __pin
keyword is used. This freezes the objects to a particular location in memory. The
following code demonstrates how to use the __pin keyword.

CCurrentUser __pin* me = new CCurrentUser();

Notice the keyword applies to (appears before) the pointer, not to the data type or
the variable.

The following table (Table 6-1) contains a list of some of the other C++ managed
extensions.

2 0 6 C # D e v e l o p e r ' s H e a d s t a r t

Managed Extension
Keyword Description C# Equivalent
__abstract Decorates a managed class to prevent the class

from being instantiated directly. Only the children
of an abstract class can be instantiated, assuming
they aren’t also decorated with __abstract.

abstract

__box Boxes value types, so they can be based as
garbage-collected classes.

int i;
object o = i;

__delegate Declares a delegate. To declare a multicast
delegate, use __delegate(multicast).

delegate

__event Declares an event. event

__gc Decorates a class declaration to make a
managed class.

class

__interface Declares an interface. interface

__nogc Declares a class as unmanaged. Used when
#pragma managed is specified.

N/A: All classes in
C# are managed.

Table 6-1 C++ Managed Extension Keywords

Note the addition of the __try_cast and __finally keywords. These add some
additional functionality to the C++ language that isn’t natively supported.

try

{

WebRequest* myRequest =

WebRequestFactory::Create(URL);

stream = myRequest->GetResponse()->GetResponseStream();

while((bytes_read = stream->Read(buffer, 0, max_to_read)))

{

total_bytes_read+=bytes_read;

Console::WriteLine(Text::Encoding::ASCII->GetString(buffer));

}

return;

}

catch(Exception* e)

C h a p t e r 6 : I n t e g r a t i n g L e g a c y C o d e w i t h C # 2 0 7

Managed Extension
Keyword Description C# Equivalent
__pin Freezes an object to a particular location in

memory, so the garbage collector won’t move it.
This enables you to save references to objects in
unmanaged code.

fixed

__property Declares a property within a managed class. property

__sealed Creates a managed class that cannot be derived
from. Use in conjunction with __gc and __value
keywords.

sealed

__try_cast Used to wrap a cast so, if the cast fails, a
System::InvalidCastException is thrown.

Automatically
supported

__value Declares a class or structure as a value type. struct SuperType
{
...

}

__finally Adds the C# finally syntax to a try catch block.
Code within the finally block executes regardless
of whether an exception is thrown. It provides a
convenient mechanism for resource cleanup.

finally

Table 6-1 C++ Managed Extension Keywords (continued)

2 0 8 C # D e v e l o p e r ' s H e a d s t a r t

{

Console::WriteLine(e->Message);

}

__finally

{

Console::WriteLine(S"\n\n\nFinished dumping page!");

}

The previous listing is a sample showing how to use the __finally keyword.
Developers must be aware of several caveats when they use Managed C++.

First, if you included MFC into your project, you need to write some special code
whenever you use the new operator on a managed class. The reason for this is that
MFC redefines the new operator in debug builds in order to track memory usage.
Unfortunately, this redefinition is incompatible with the managed classes and the
result is an error C3828, “placement arguments not allowed while creating instances
of managed classes”. To avoid this problem, you need to undefine the MFC macro
for new each time you call new on a managed class. After instantiating the managed
class, you redefine the macro. The following is some sample code that demonstrates
how to do this:

System::String* message;

#pragma push_macro("new")

#undef new

message =

new System::String("Truly, you have a dizzying intellect.");

#pragma pop_macro("new")

System::Console::WriteLine(message);

The other caveats relate to intermixing your managed and unmanaged C++ code.
First, you cannot inherit one type of class from the other. In other words, an
unmanaged class cannot derive from a managed class and vice versa. This includes
any template-based classes. In fact, you cannot use __gc or __value on
template-based classes.

// error C3151: '__gc' cannot be applied to a template

template<class T>

__gc class CDerrived : public T

{

};

The previous code is invalid, therefore. To leave off the __gc, however, makes the
derived class, CDerrived, unmanaged and, therefore, breaks the aforementioned rule
regarding mixing and matching unmanaged types.

// error C2516: 'T' : is not a legal base class

// see reference to class template instantiation 'CDerrived

// <T>' being compiled with T=CCurrentUser __gc *

template<class T>

class CDerrived : public T

{

};

...

CDerrived<CCurrentUser*> pcu;

Finally, you cannot declare managed types as a global or a static. The resulting
error is “error C3145: ‘g_user’: cannot declare a global or static managed object
or a __gc pointer.” In fact, you cannot even contain a managed object within an
unmanaged class, as is done in the following code.

class CUnmanagedClass

{

CCurrentUser* cu;

};

Aside from these caveats, using Managed C++ is a powerful environment to work
in because it’s so quick and easy to begin capitalizing on the wealth of functionality
built within the .NET Framework directly from your existing C++ applications.
Rather than porting any code to .NET, you simply change the compile option on the
C++ compiler and, immediately, you can begin using the rich .NET framework. This
can be done whether your C++ program was originally written using ATL, MFC, or
STL. All these libraries interoperate “relatively” cleanly with the .NET framework
classes. Managed C++ can serve as a substitute for both the CCW and the RCW
because it can switch so easily between the managed and unmanaged world.
Managed C++ can provide a means for writing custom CCW and RCW code. If you
need to call COM components, you can directly call the various COM API, such as
CoCreateInstance(), just as easily as you could call any of the other Win32 API.
Also, as with Visual C++ previously, no need exists to declare each API you’ll call
because this has already been done for you in the various C++ header files.

C h a p t e r 6 : I n t e g r a t i n g L e g a c y C o d e w i t h C # 2 0 9

Migrating Code
In this chapter, we discussed various approaches for integrating legacy code into the
.NET Framework. The interoperability support in .NET is pretty complete, fairly
easy to use, and can be completely customized when needed. This support is also
crucial to migration strategies because it allows an evolutionary (a step at a time),
rather than a revolutionary (everything at once) approach. Through interoperation,
legacy code can be transformed to .NET at a pace that makes sense. Sooner or later,
if the integrated legacy code has any life beyond basic maintenance, it can make its
way natively into the .NET platform.

Currently, two approaches exist for “automatic migration” from existing code
to .NET. As we previously mentioned, Visual Studio.NET includes a utility that
automatically upgrades a VB6 project to a VB.NET project. This transforms the
project, but not the developer. To take advantage of the .NET features requires
rewriting at least some portions of the application. While .NET makes a revolutionary
jump because all code can be converted at once, it’s really more of an evolutionary
strategy in which the code can be rather quickly deployed on .NET, and then, over
time, portions of the application, both new and existing, can be designed with .NET
in mind.

Microsoft is also providing JUMP to .NET, which provides several tools to
integrate existing Java programs into .NET. JUMP includes a utility that converts
Visual J++ projects to C# projects. Here, the translation may be a bit closer to what
is ultimately desired because the languages have so much in common. Again, this is
a reasonable revolutionary strategy because, in theory, minimal work is required to
get the Java code converted and running on .NET.

One of the trickiest issues in software development is adding useful functions to
software, while maintaining compatibility with existing versions. Yet, as significant
new technology is introduced, if it isn’t quickly integrated into the product, the product
finds itself left behind. .NET is certainly significant new technology that’s already
influencing software development and will continue to do so for years to come.

Once you start developing in .NET, there are several reasons beyond the basic
“it’s cool and new” type reasons for migrating all your code. This includes basic
programmer efficiency, code consistency, ease of maintenance, as well as adding
new capabilities that can provide significant features and functions to the delivered
software program or Web service.

As a component software platform, .NET allows for and supports migration
component-by-component or function-by-function. Exactly how this is done will,
of course, be application-specific. Some critical questions to ask yourself when

2 1 0 C # D e v e l o p e r ' s H e a d s t a r t

developing the migration plan include: What new features are the most important to
your users? and, What are the critical support issues you’re facing with your current
applications? Answering these questions is the first step in developing a migration
plan. The features at the top of the list dictate where .NET development starts and,
hence, where the migration path begins. Over time, as new development is done,
additional components can be brought on to the platform.

Summary
We’ve quickly come to the end of our discussions on C# and .NET. This book set
out to give you a head start on C# and the .NET Framework. A short book such as
this cannot go into the technical detail required in building a significant system, but,
we hope it has given you an idea of what C# is all about, as well as some of the
related topics that could be significant to your development. At a minimum, we hope
we inspired you to install the .NET SDK (if you haven’t already) and to get started
programming in C#.

In addition to this book, several good resources are available for gaining
further knowledge on .NET in advance of its official release. This includes the
Microsoft Developer’s Network site, which has a specific home page for .NET
at http://msdn.microsoft.com/net/. A wide variety of other useful Web resources
also exist.

C h a p t e r 6 : I n t e g r a t i n g L e g a c y C o d e w i t h C # 2 1 1

This page intentionally left blank.

Index

NOTE: Page numbers in italics refer to illustrations or charts.

A
__abstract keyword, Managed C++, 206
abstraction

See also object-oriented features of C#
interfaces and, 31–34

ActiveX components, COM (Component
Object Model) and, 5

adapter classes, Java comparison, 137
AddRef() method, reference counting,

152–153
ADO.NET classes, .NET Framework, 10
ApartmentState property, threading of RCW

components, 176, 177
APIs, calling unmanaged from C#, 199–200
application domains, .NET Framework, 77–78
arrays, 27–28

C++ comparison, 119–120
Java comparison, 141
multidimensional, 28
overview, 27
Visual Basic.NET comparison, 129

ASP.NET classes
integrating legacy code with C#, 168, 169
.NET Framework, 9–10

assemblies, 76–77
See also .NET Framework
building, 78–79
calling .NET objects from COM,

177–178
Java comparison, 134
libraries, 77

types of, 77
version control, 79–84

assembly manifests, version control, 79–81
assignment and equality operators restriction,

C++ comparison, 112–114
ATL programming, multiple inheritance,

154–156
attribute-based programming, 86–88

See also metadata; reflection
PrimaryKeyAttribute, 87–88

attributes, 61–62
COM interoperability, 193–194
custom, 62

automatic generation of documentation, Java
comparison, 133

B
binding

early. See early binding
late. See late binding

bool type, C# value types, 19
__box keyword, Managed C++, 206
boxing and unboxing, type management, 25–26
ByeBye.cpp, Managed C++, 202
byte type, C# value types, 19

C
C#

attributes, 61–62
calling COM objects from, 169–177

213
Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

calling unmanaged APIs from, 199–200
coding style, 68
defined, 13–14
documenting code via XML tags, 66–67
exceptions, 59–61
highlights of, 14
indexers, 62–65
integrating legacy code with, 167–211
Java and, 13, 132–141
language comparisons, 109–141
limitations of, 143–166
namespaces, 57–59
.NET Framework, 2–11, 69–108
object-oriented component development,

28–57
object-oriented features of, 29–39
overview, 1–14
pronunciation of, 2
reasons for using, 11–13
SimpleProgram example, 16–18
type management, 18–28
unsafe keyword, 65–66
value types, 19–20

C++ comparison, 110–127
See also language comparisons; Managed

C++
arrays, 119–120
assignment and equality operators

restriction, 112–114
building component libraries, 124–125
calling libraries, 124
ConditionalAttribute, 121–122
converting types, 117
data types, 116–118
declarative order as insignificant, 112
exception processing, 115
explicit jump statements, 114–115
foreach() statements and iteration,

115–116
memory management, 125–126
multiple inheritance, 123–124
native data types, 116–118
NULL as keyword, 118
overview, 110–111
performance, 126–127

pointers (lack of), 118–119
preprocessors (lack of), 120–122
strings, 116–117
templates (lack of), 122–123
types, 116–118
versions, 111
void** pointer, 119

calling COM objects from C#, 169–177
See also integrating legacy code with C#
COM connection points, 174–176
COM object lifetime and deterministic

finalization, 174
inheritance and RCW objects, 174
method return values and HRESULTS,

173
overview, 169–170
RCW (Runtime Callable Wrapper),

172–173
RCW objects and inheritance, 174
SampleSrv.idl, 170
threading of RCW components, 176–177
TLBIMP utility, 171–172

calling libraries, C++ comparison, 124
calling .NET objects from COM, 177–195

See also integrating legacy code with C#
assemblies, 177–178
CCW (COM Callable Wrapper), 177,

185–187
COM interoperability attributes, 193–194
.NET events and COM clients, 187–193
.NET to type library conversions,

194–195
overview, 177–178
REGASM utility, 184–185
threading of .NET components, 193
TLBEXP utility, 178–183

calling unmanaged APIs from C#, PInvoke
(Platform Invocation), 199–200

CCW (COM Callable Wrapper), 177, 185–187
See also calling .NET objects from COM
garbage collection, 185–186
interfaces, 185–187
IPatient interface, 186–187
PatientMonitor class, 186–187

char type, C# value types, 19

2 1 4 C # D e v e l o p e r ' s H e a d s t a r t

CheckReferenceCount() method, reference
counting, 152

class constructors, 40–42
See also object-oriented component

development
defaults, 41–42
instance, 40–41
static, 40–41

class definition and usage, Java comparison,
134–136

class destructors, garbage collection and, 42
class libraries, .NET Framework, 9
class variables, Managed C++, 204
classes

See also structs
abstract, 31–34
adding to SimpleProgram example,

17–18
ClassInterfaceAttribute, TLBEXP utility and

calling .NET objects from COM, 181
cl.exe compiler with /CLR option,

Managed C++, 201
clients, defined, 50
CLR (Common Language Runtime)

garbage collection, 42, 98–106
loading, 72–75
metadata and, 85–86
.NET Framework, 6–7, 72–75
version control, 81–82

CLS (Common Language Specification), .NET
Framework, 8–9, 94–95

code, migrating, 210–211
coding style, 68
CoInitializeEx() call, threading of RCW

components, 176
COM (Component Object Model), 4–5

ActiveX components, 5
callable wrapper. See CCW
calling COM objects from C#, 169–177
calling .NET objects from, 177–195
components, 4
connection points, 174–176
containers, 5
integrating legacy code with C#, 168–169

interoperability attributes, 193–194
.NET events and COM clients, 187–193
object lifetime and deterministic

finalization, 174
OLE/COM Viewer and exporting IDLs,

179–183, 189–191
servers, 4

COM connection points, 174–176
See also calling COM objects from C#
Countdown object, 174–175
CountdownClient.cs, 175–176
TimersAsm.Dll, 175–176

COM interoperability attributes, 193–194
ComVisibleAttribute(), 194
GuidAttribute(), 193–194
overview, 193
ProgIdAttribute, 194

Common Language Runtime. See CLR
Common Language Specification. See CLS
component libraries, C++ comparison,

124–125
component-based software development, 2–6

See also .NET Framework
COM (Component Object Model), 4–5
monolithic approach versus, 3
.NET Framework, 5–6
object-oriented. See object-oriented

component development
OLE (Object Linking and Embedding),

2–3
phases, 2–3

components
ActiveX, 5
COM (Component Object Model), 4
threading of .NET, 193
threading of RCW, 176–177

ComponentServices class, .
NET Framework, 10

ComVisibleAttribute(), COM interoperability
attributes, 194

ConditionalAttribute, C++ comparison,
121–122

configuration files, version control, 82–83
connection points, COM, 174–176

I n d e x 2 1 5

constructors
class, 40–42
instance, 40–41
static, 40–41

containers, COM (Component Object Model), 5
containment, 156–159

See also limitations of C#; multiple
inheritance

defined, 158
FileStreamRefCounted class, 157–158
IRefCountedImpl class, 156–157
substitutability and, 159

converting types
C++ comparison, 117
.NET to type library, 194–195

Countdown object, COM connection points,
174–175

CountdownClient.cs, COM connection points,
175–176

cross-language interoperability, .NET
Framework, 93–94

cross-platform compatibility, Java comparison,
133

CTS (Common Type System), .
NET Framework, 95

D
data marshalling, 196–199

See also integrating legacy code with C#
EmployeeFactory class, 197–199
isomorphic types, 196
nonisomorphic types, 196
overview, 196
parameters, 196
process of, 197–199
strings and MarshalAsAttribute(),

196–197, 198
decimal type, C# value types, 19
declarative order as insignificant, C++

comparison, 112
declaring delegates, 51–52
declaring namespaces, 58–59
declaring variables, using keyword, 147–150
__delegate keyword, Managed C++, 206

delegates, 50–53
See also object-oriented component

development
declaring, 51–52
instances, 51
Java comparison, 138
methods, 51
multicast, 53
type declaration, 51

delegation and events
Java comparison, 136–138
.NET Framework, 98

deployment enhancements, .NET Framework,
7–8

destructors
class, 42
deterministic finalization and, 146
garbage collection and, 104–105
Managed C++, 203

deterministic finalization, 144–154
See also limitations of C#
COM object lifetime, 174
destructors, 146
Enter() calls, 146–147
Exit() calls, 146–147
explicit release of resources, 146–147
Finalize() methods, 146
.NET Framework, 153–154
overview, 144–146
reference counting, 150–153
resource versus memory cleanup, 146
try-catch-finally blocks, 147
using keyword, 147–150

Dispose function, garbage collection, 105
Dispose() method, using keyword, 148–150
documentation, automatic generation of, 133
documenting code via XML tags, 66–67
domains, application, 77–78
double type, C# value types, 19

E
early binding, TLBEXP utility and calling

.NET objects from COM, 181
EmployeeFactory class, data marshalling,

197–199

2 1 6 C # D e v e l o p e r ' s H e a d s t a r t

encapsulation, 39
See also object-oriented features of C#

End With blocks, Visual Basic.NET
comparison, 131

Enter() calls, deterministic finalization,
146–147

Enum type conversion, .NET to type library
conversions, 195

enumerations, 22–23
See also type management; value types
Java comparison, 138–139

equality and assignment operators restriction,
C++ comparison, 112–114

error trapping. See exceptions
__event keyword, Managed C++, 206
events, 53–57

See also object-oriented component
development

IDispatch-based, 192–193
.NET events and COM clients, 187–193

events and delegation
Java comparison, 136–138
.NET Framework, 98

exceptions, 59–61
C++ comparison, 115
Java comparison, 140

Exit() calls, deterministic finalization, 146–147
explicit conversions, type management, 26
explicit jump statements, C++ comparison,

114–115
explicit release of resources, 146–147
exporting IDLs

See also .NET events and COM clients;
TLBEXP utility

OLE/COM Viewer, 179–183, 189–191
extending base class, inheritance, 30
extension keywords, Managed C++, 206–207
extensions, Managed C++, 204–205

F
fields, object-oriented component

development, 46
FileStreamRefCounted class

containment, 157–158
interface implementation, 160–161

FileStreamRefCounted constructors,
reference counting, 152

finalization
deterministic. See deterministic

finalization
garbage collection and, 102–105

Finalize() methods, deterministic finalization,
146

__finally keyword, Managed C++, 207, 208
float type, C# value types, 19
foreach() statements

C++ comparison, 115–116
Java comparison, 141

forms, .NET Framework WinForms, 9
freachable queue, garbage collection, 104

G
garbage collection, 98–106

See also .NET Framework
CCW (COM Callable Wrapper), 185–186
class destructors and, 42
destructors and, 104–105
Dispose function, 105
finalization, 102–105
freachable queue, 104
Managed C++, 202–203, 206
managed heap, 99, 101–102
overview, 98–99
root objects, 100–101
steps to, 100–102
strong and weak references, 105–106

__gc keyword, Managed C++, 206, 208–209
GetPKValue() function, reflection, 90–93
GetPrimaryKeyName() function, reflection,

89–90
global types, Managed C++, 209
GuidAttribute(), COM interoperability

attributes, 193–194

H
HRESULTS and method return values

calling COM objects from C#, 173
.NET to type library conversions,

194–195

I n d e x 2 1 7

I
IDispatch pointers, .NET events and COM

clients, 189
IDispatch-based events, .NET events and COM

clients, 192–193
IDLs, exporting via OLE/COM Viewer,

179–183, 189–191
IL. See MSIL (Microsoft intermediate

language)
IMonitorEvent, .NET events and COM clients,

192
implicit conversions, type management, 26
inclusion polymorphism, 34–37

See also operation polymorphism;
polymorphism

indexers, 62–65
Java comparison, 140

inheritance, 29–30
See also object-oriented features of C#
combining macros with interface,

162–164
extending base class, 30
Managed C++, 208
multiple. See multiple inheritance
RCW objects and calling COM objects

from C#, 174
initialization, threading of RCW components,

176
instance constructors, 40–41

See also class constructors
instances, delegate, 51
int type, C# value types, 19
integrating legacy code with C#, 167–211

ASP.NET, 168, 169
calling .NET objects from COM,

177–195
COM (Component Object Model),

168–169
data marshalling, 196–199
integration approaches, 168–169
Managed C++, 201–209
migrating code, 210–211
overview, 168

PInvoke (Platform Invocation), 199–200
interface implementation, 160–162

See also multiple inheritance
FileStreamRefCounted class, 160–161
IRefCounted interface, 160, 161–162

interface inheritance, combining macros with,
162–164

__interface keyword, Managed C++, 206
interfaces

abstraction and, 31–34
calling unmanaged APIs from C#,

199–200
CCW (COM Callable Wrapper), 185–187
Java comparison, 141

Interlocked class
reference counting, 152
thread synchronization, 108

intermediate language (IL). See MSIL
(Microsoft intermediate language)

interoperability
cross-language, 93–94
Managed C++, 201–209

invoking platforms, PInvoke (Platform
Invocation), 199–200

IPatient interface
CCW (COM Callable Wrapper), 186–187
.NET events and COM clients, 187–189

IRefCounted interface
interface implementation, 160, 161–162
reference counting, 152

IRefCountedImpl class, containment,
156–157

isomorphic types, data marshalling, 196
iteration and foreach() statements, C++

comparison, 115–116

J
Java comparison, 13, 132–141

See also language comparisons
adapter classes, 137
arrays, 141
assemblies, 134
automatic generation of documentation,

133

2 1 8 C # D e v e l o p e r ' s H e a d s t a r t

class definition and usage, 134–136
cross-platform compatibility, 133
delegates and events, 136–138
enumerations, 138–139
exceptions, 140
foreach() statements, 141
indexers, 140
interfaces, 141
JIT compilers, 132
metadata, 133
namespaces, 133–134
overview, 132–133
packages, 133–134
passing parameters by reference, 138
primitive types, 134
properties, 138
source files, 134
switch statements, 141
unsafe mode, 140
versioning, 133–134

JIT compilers
Java comparison, 132
metadata and, 86

jump statements, C++ comparison and explicit,
114–115

JUMP tools, migrating code, 210

L
language comparisons, 109–141

See also programming
C++ comparison, 110–127
Java comparison, 132–141
overview, 110
Visual Basic.NET comparison, 127–131

late binding
TLBEXP utility and calling .NET objects

from COM, 180
Visual Basic.NET comparison, 127

libraries
as assemblies type, 77
C++ comparison and calling, 124
C++ comparison and component,

124–125
generating COM-type via TLBEXP

utility, 178–183

.NET Framework class, 9

.NET to type library conversions,
194–195

limitations of C#, 143–166
deterministic finalization, 144–154
macros, 162–164
multiple inheritance, 154–162
overview, 144
source code security, 166
templates, 164–165

lock keyword, thread synchronization, 107
long type, C# value types, 19

M
macros, 162–164

See also limitations of C#
combining with interface inheritance,

162–164
overview, 162

Main() declaration, SimpleProgram example,
16–17

Managed C++, 201–209
See also C++ comparison; integrating

legacy code with C#; interoperability
__abstract keyword, 206
adding code to native C++, 201–202
__box keyword, 206
ByeBye.cpp, 202
caveats, 208–209
class variables, 204
cl.exe compiler with /CLR option, 201
__delegate keyword, 206
destructors, 203
__event keyword, 206
extension keywords, 206–207
extensions, 204–205
__finally keyword, 207, 208
garbage collection, 202–203, 206
__gc keyword, 206, 208–209
global types, 209
idiosyncrasies, 208–209
inheritance, 208
__interface keyword, 206
MFC and, 208
__nogc keyword, 206

I n d e x 2 1 9

overview, 201
__pin keyword, 207
pointers, 204
__property keyword, 207
references, 205
__sealed keyword, 207
static types, 209
__try_cast keyword, 207
type variables, 206
__value keyword, 205, 207, 208–209

managed execution, .NET Framework, 7
managed heap, garbage collection, 99,

101–102
MarshalAsAttribute(), data marshalling and

strings, 196–197, 198
marshalling. See data marshalling
memory management

C++ comparison, 125–126
garbage collection and, 42, 98–106

metadata, 6, 84–93
See also MSIL (Microsoft intermediate

language); .NET Framework
attribute-based programming, 86–88
CLR (Common Language Runtime) and,

85–86
Java comparison, 133
JIT compiler and, 86
overview, 84–86
reflection, 88–93
version control and assembly manifests,

79–81
method parameters, 43–46

output parameter value, 44–45
passing via values, 43
variable, 45–46

method return values and HRESULTS
calling COM objects from C#, 173
.NET to type library conversions,

194–195
methods, 42–46

See also object-oriented component
development

delegate, 51

overview, 42–43
parameters, 43–46

MFC, Managed C++ and, 208
migrating code, 210–211

See also integrating legacy code with C#
JUMP tools, 210

modules, 76
See also .NET Framework
building, 78–79

monolithic approach, component-based
software development versus, 3

MSIL (Microsoft intermediate language), 5–6,
70–75

See also .NET Framework
loading CLR (Common Language

Runtime), 72–75
metadata, 6
overview, 70–72

multicast delegates, 53
See also delegates; object-oriented

component development
multidimensional arrays, 28

See also arrays
multiple inheritance, 30, 154–162

See also inheritance; limitations of C#
ATL programming, 154–156
C++ comparison, 123–124
containment, 156–159
interface implementation, 160–162
overview, 154–156

N
namespaces, 57–59

declaring, 58–59
Java comparison, 133–134
System, 57–58

native data types, C++ comparison, 116–118
.NET components, threading of, 193
.NET events and COM clients, 187–193

See also calling .NET objects from COM
exporting IDLs, 189–191
IDispatch pointers, 189
IDispatch-based events, 192–193

2 2 0 C # D e v e l o p e r ' s H e a d s t a r t

IMonitorEvent, 192
IPatient interface, 187–189
overview, 187
PatientMonitor class, 190–192

.NET Framework, 2–11, 69–108
ADO.NET classes, 10
application domains, 77–78
ASP.NET classes, 9–10
assemblies, 76–77, 78–79
building blocks of, 76–78
building modules and assemblies, 78–79
calling COM objects from C#, 169–177
class libraries, 9
CLR (Common Language Runtime), 6–7,

72–75
CLS (Common Language Specification),

8–9, 94–95
coding style, 68
component-based software development,

2–6
ComponentServices class, 10
cross-language interoperability, 93–94
CTS (Common Type System), 95
defined, 2
delegation and events, 98
deployment enhancements, 7–8
deterministic finalization, 153–154
garbage collection, 98–106
managed execution, 7
metadata, 84–93
migrating code, 210–211
modules, 76, 78–79
MSIL (Microsoft intermediate language),

5–6, 70–75
object-oriented nature of, 96–98
overview, 6, 70
security, 8
thread synchronization, 107–108
tools, 10, 11
type system, 7
version control, 79–84
Web services, 9–10
WinForms, 9

.NET objects, calling from COM, 177–195

.NET to type library conversions, 194–195
See also calling .NET objects from COM
duplicate type names, 195
Enum type conversion, 195
method return values and HRESULTS,

194–195
versions, 195

__nogc keyword, Managed C++, 206
nonisomorphic types, data marshalling, 196
NULL as keyword, C++ comparison, 118

O
object-oriented component development,

28–57
See also component-based software

development
class constructors, 40–42
class destructors, 42
delegates, 50–53
events, 53–57
fields, 46
methods, 42–46
object-oriented features of C#, 29–39
operator overloading, 48–50
overview, 28–29
properties, 46–48

object-oriented features of C#, 29–39
abstraction, 31–34
encapsulation, 39
inheritance, 29–30
overview, 29
polymorphism, 34–39
System.Object, 29

object-oriented nature of .NET Framework,
96–98

See also .NET Framework
System.Object, 96–97

objects, root, 100–101
OLE (Object Linking and Embedding),

component-based software development,
2–3

OLE/COM Viewer, exporting IDLs, 179–183,
189–191

I n d e x 2 2 1

operation polymorphism
See also inclusion polymorphism;

polymorphism
overloading and, 37–39

operator overloading, 48–50
See also object-oriented component

development
Visual Basic.NET comparison, 128–129

output parameter value, method parameters,
44–45

overloading
operation polymorphism and, 37–39
operators, 48–50

P
packages, Java comparison, 133–134
parameters

method, 43–46
passing by reference and Java

comparison, 138
PatientMonitor class

CCW (COM Callable Wrapper), 186–187
.NET events and COM clients, 190–192

performance, C++ comparison, 126–127
__pin keyword, Managed C++, 207
PInvoke (Platform Invocation)

See also integrating legacy code with C#
calling unmanaged APIs from C#,

199–200
pointers

C++ comparison, 118–119
Managed C++, 204
Visual Basic.NET comparison and safe

mode, 129
polymorphism, 34–39

See also object-oriented features of C#
inclusion, 34–37
operation, 37–39

preprocessors, C++ comparison, 120–122
PrimaryKeyAttribute

attribute-based programming, 87–88
reflection, 89–92

primitive types, Java comparison, 134

ProgIdAttribute, COM interoperability
attributes, 194

programming
See also language comparisons
attribute-based, 86–88

properties
Java comparison, 138
object-oriented component development,

46–48
__property keyword, Managed C++, 207

R
RCW (Runtime Callable Wrapper), 172–173

See also calling COM objects from C#
objects and inheritance, 174
threading of components, 176–177

reference counting, 150–153
See also deterministic finalization
AddRef() method, 152–153
advantages/disadvantages, 153
CheckReferenceCount() method, 152
code listing, 150–151
FileStreamRefCounted constructors,

152
Interlocked class, 152
IRefCounted interface, 152
Release() method, 152–153

reference types, 18, 23–25
See also type management; value types
comparisons, 25
overview, 23–24
strings and, 24–25

references
Java comparison and passing parameters

by, 138
Managed C++, 205
strong and weak, 105–106

reflection, 88–93
See also attribute-based programming;

metadata
GetPKValue() function, 90–93
GetPrimaryKeyName() function, 89–90
PrimaryKeyAttribute, 89–92

2 2 2 C # D e v e l o p e r ' s H e a d s t a r t

REGASM registration utility, 184–185
See also calling .NET objects from COM

Release() method, reference counting,
152–153

resource versus memory cleanup, deterministic
finalization, 146

resources, explicit release of and deterministic
finalization, 146–147

root objects, garbage collection and, 100–101
Runtime Callable Wrapper. See RCW

S
safe mode, pointers and Visual Basic.NET

comparison, 129
SampleSrv.idl, calling COM objects from C#,

170
sbyte type, C# value types, 19
__sealed keyword, Managed C++, 207
security

.NET Framework, 8
source code, 166

Select Case statements, Visual Basic.NET
comparison, 129–131

servers
COM (Component Object Model), 4
defined, 50

short type, C# value types, 19
side-by-side installations, version control,

83–84
signature key files, version control, 83
SimpleProgram example, 16–18

adding class to, 17–18
Main() declaration, 16–17

software development
See also language comparison;

programming
component-based, 2–6

source code security, limitations of C#, 166
source files, Java comparison, 134
static class constructors, 40–41

See also class constructors
static types, Managed C++, 209

strings
C++ comparison, 116–117
MarshalAsAttribute() and data

marshalling, 196–197, 198
reference types and, 24–25

strong and weak references, garbage collection,
105–106

structs, 20–22
See also classes; type management; value

types
substitutability, containment and, 159
switch statements

Java comparison, 141
Visual Basic.NET comparison, 129–131

synchronization, thread, 107–108
System namespace, 57–58

See also namespaces
System.IDisposable interface, using keyword,

148–150
System.Object

object-oriented features of C#, 29
object-oriented nature of .NET

Framework, 96–97
templates, 164–165

T
templates, 164–165

See also limitations of C#
C++ comparison, 122–123
System.Object, 164–165

thread synchronization, 107–108
See also .NET Framework
Interlocked class, 108
lock keyword, 107
typeof(<class>), 107–108

threading of .NET components, calling .NET
objects from COM, 193

threading of RCW components, 176–177
See also calling COM objects from C#
ApartmentState property, 176, 177
CoInitializeEx() call, 176
initialization, 176

I n d e x 2 2 3

TimersAsm.Dll, COM connection points,
175–176

TLBEXP utility, 178–183
See also calling .NET objects from COM
ClassInterfaceAttribute, 181
early binding, 181
exporting IDLs, 179–183
late binding, 180

TLBIMP utility, calling COM objects from C#,
171–172

trapping errors. See exceptions
__try_cast keyword, Managed C++, 207
try-catch-finally blocks, deterministic

finalization, 147
type management, 18–28

arrays, 27–28
boxing and unboxing, 25–26
CTS (Common Type System) and .NET

Framework, 95
duplicate names, 195
explicit conversions, 26
implicit conversions, 26
.NET Framework, 7
.NET to type library conversions,

194–195
overview, 18
primitive types and Java comparison, 134
reference types, 18, 23–25
type comparisons, 25
type conversions, 26
unboxing and boxing, 25–26
value types, 18, 19–23

type variables, Managed C++, 206
typeof(<class>), thread synchronization,

107–108
types

C++ comparison, 116–118
data marshalling, 196–199
declaring delegate, 51
Java comparison and primitive, 134

U
uint type, C# value types, 19
ulong type, C# value types, 19

unboxing and boxing, type management, 25–26
unsafe keyword, 65–66
unsafe mode, Java comparison, 140
ushort type, C# value types, 19
using keyword, 147–150

See also deterministic finalization
Dispose() method, 148–150
overview, 147–148
System.IDisposable interface, 148–150

V
__value keyword, Managed C++, 205, 207,

208–209
value types, 18, 19–23

See also reference types; type
management

built-in functionality, 19–20
comparisons, 25
enumerations, 22–23
listed, 19
overview, 19–20
structs, 20–22

values, passing method parameters via, 43
variable declaration, using keyword, 147–150
variable method parameters, 45–46

See also method parameters
version control, 79–84

See also assemblies; .NET Framework
assembly manifests, 79–81
CLR (Common Language Runtime),

81–82
configuration files, 82–83
metadata and, 79–81
side-by-side installations, 83–84
signature key files, 83

versions
C++ comparison, 111
Java comparison, 133–134
.NET to type library conversions, 195

Visual Basic.NET comparison, 127–131
See also language comparisons
arrays, 129
End With blocks, 131
late binding support, 127

2 2 4 C # D e v e l o p e r ' s H e a d s t a r t

operator overloading, 128–129
overview, 127
safe mode and pointers, 129
Select Case statements, 129–131
switch statements, 129–131
With blocks, 131

void** pointer, C++ comparison, 119

W
weak and strong references, garbage collection,

105–106
Web services, .NET Framework, 9–10

WinForms, .NET Framework, 9
With blocks, Visual Basic.NET comparison,

131
wrappers

CCW (COM Callable Wrapper), 177,
185–187

RCW (Runtime Callable Wrapper),
172–173

X
XML tags, documenting code via, 66–67

I n d e x 2 2 5

INTERNATIONAL CONTACT INFORMATION

AUSTRALIA
McGraw-Hill Book Company Australia Pty. Ltd.
TEL +61-2-9417-9899
FAX +61-2-9417-5687
http://www.mcgraw-hill.com.au
books-it_sydney@mcgraw-hill.com

CANADA
McGraw-Hill Ryerson Ltd.
TEL +905-430-5000
FAX +905-430-5020
http://www.mcgrawhill.ca

GREECE, MIDDLE EAST,
NORTHERN AFRICA
McGraw-Hill Hellas
TEL +30-1-656-0990-3-4
FAX +30-1-654-5525

MEXICO (Also serving Latin America)
McGraw-Hill Interamericana Editores S.A. de C.V.
TEL +525-117-1583
FAX +525-117-1589
http://www.mcgraw-hill.com.mx
fernando_castellanos@mcgraw-hill.com

SINGAPORE (Serving Asia)
McGraw-Hill Book Company
TEL +65-863-1580
FAX +65-862-3354
http://www.mcgraw-hill.com.sg
mghasia@mcgraw-hill.com

SOUTH AFRICA
McGraw-Hill South Africa
TEL +27-11-622-7512
FAX +27-11-622-9045
robyn_swanepoel@mcgraw-hill.com

UNITED KINGDOM & EUROPE
(Excluding Southern Europe)
McGraw-Hill Education Europe
TEL +44-1-628-502500
FAX +44-1-628-770224
http://www.mcgraw-hill.co.uk
computing_neurope@mcgraw-hill.com

ALL OTHER INQUIRIES Contact:
Osborne/McGraw-Hill
TEL +1-510-549-6600
FAX +1-510-883-7600
http://www.osborne.com
omg_international@mcgraw-hill.com

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

	About the Authors
	Copyright
	Contents at a Glance
	Contents
	Acknowledgments
	Introduction
	CHAPTER 1. Introduction to C#
	The Component-based Model of Software Design
	The .NET Approach to Component-based Software Development
	What Is the .NET Framework
	Why C#
	What Is C#

	CHAPTER 2. C# Language Review
	A Simple C# Program
	C# Types and Type Management
	Object-oriented Component Development in C#
	Namespaces in C#
	Exceptions
	Attributes
	Indexers
	Writing Unsafe Code
	Documenting Code Using XML
	C# Coding Style

	CHAPTER 3. .NET, the Operating Environment for C#
	Microsoft IL
	.NET Building Blocks
	Building Modules and Assemblies
	Robust Version Control
	Built-in Metadata
	Cross-language Interoperability
	Common Language Specification
	Common Type System
	Object-oriented
	Delegation and Events
	Memory Management Through Garbage Collection
	Thread Synchronization

	CHAPTER 4. C# Language Comparisons
	Comparing C# to C++
	Comparing C# to Visual Basic.NET
	Comparing C# to Java

	CHAPTER 5. Working Within the Bounds of C#
	Deterministic Finalization
	Multiple Inheritance
	Macros
	Templates
	Source Code Security

	CHAPTER 6. Integrating Legacy Code with C#
	Integration Approaches
	Calling COM Objects from C#
	The COM Callable Wrapper,Calling .NET Objects from COM
	Data Marshalling
	Platform Invocation Services,Calling Unmanaged APIs from C#
	Interoperability Through Managed C++
	Migrating Code
	Summary

	Index
	INTERNATIONAL CONTACT INFORMATION

